cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A111399 Numbers in A048945 but not in A111398.

Original entry on oeis.org

120, 168, 210, 216, 256, 264, 270, 280, 312, 330, 360, 378, 384, 390, 408, 420, 440, 456, 462, 480, 504, 510, 520, 540, 546, 552, 570, 594, 600, 616, 630, 640, 660, 672, 680, 690, 696, 702, 714, 728, 744, 750, 756, 760, 770, 780, 792, 798, 840
Offset: 1

Views

Author

Ant King, Nov 11 2005

Keywords

Crossrefs

Programs

  • Mathematica
    q[n_] := Module[{e = FactorInteger[n][[;; , 2]], prod}, (prod = Times @@ (e + 1)) != 8 && Divisible[prod * GCD @@ e, 8] ]; Select[Range[840], q] (* Amiram Eldar, Jan 02 2021 *)
  • PARI
    isok(n) = {prd = 1; fordiv(n, d, prd = prd*d); ispower(prd, 4) && (prd != n^4);}  \\ Michel Marcus, Oct 04 2013

Extensions

More terms from Michel Marcus, Oct 04 2013

A007955 Product of divisors of n.

Original entry on oeis.org

1, 2, 3, 8, 5, 36, 7, 64, 27, 100, 11, 1728, 13, 196, 225, 1024, 17, 5832, 19, 8000, 441, 484, 23, 331776, 125, 676, 729, 21952, 29, 810000, 31, 32768, 1089, 1156, 1225, 10077696, 37, 1444, 1521, 2560000, 41, 3111696, 43, 85184, 91125, 2116, 47, 254803968, 343
Offset: 1

Views

Author

R. Muller

Keywords

Comments

All terms of this sequence occur only once. See the second T. D. Noe link for a proof. - T. D. Noe, Jul 07 2008
Every natural number has a unique representation in terms of divisor products. See the W. Lang link. - Wolfdieter Lang, Feb 08 2011
a(n) = n only if n is prime or 1 (or, if n is in A008578). - Alonso del Arte, Apr 18 2011
Sometimes called the "divisorial" of n. - Daniel Forgues, Aug 03 2012
a(n) divides EulerPhi(x^n-y^n) (see A. Rotkiewicz link). - Michel Marcus, Dec 15 2012
The proof that all the terms of this sequence occur only once (mentioned above) was given by Niven in 1984. - Amiram Eldar, Aug 16 2020

Examples

			Divisors of 10 = [1, 2, 5, 10]. So, a(10) = 2*5*10 = 100. - _Indranil Ghosh_, Mar 22 2017
		

References

  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 1, p. 57.
  • J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 83.

Crossrefs

Cf. A000203 (sums of divisors).
Cf. A000010 (comments on product formulas).

Programs

  • GAP
    List(List([1..50],n->DivisorsInt(n)),Product); # Muniru A Asiru, Feb 17 2019
  • Haskell
    a007955 = product . a027750_row  -- Reinhard Zumkeller, Feb 06 2012
    
  • Magma
    f := function(n); t1 := &*[d : d in Divisors(n) ]; return t1; end function;
    
  • Maple
    A007955 := proc(n) mul(d,d=numtheory[divisors](n)) ; end proc: # R. J. Mathar, Mar 17 2011
    seq(isqrt(n^numtheory[tau](n)), n=1..50); # Gary Detlefs, Feb 15 2019
  • Mathematica
    Array [ Times @@ Divisors[ # ]&, 100 ]
    a[n_] := n^(DivisorSigma[0, n]/2); Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Nov 21 2013 *)
  • PARI
    a(n)=if(issquare(n,&n),n^numdiv(n^2),n^(numdiv(n)/2)) \\ Charles R Greathouse IV, Feb 11 2011
    
  • Python
    from sympy import prod, divisors
    print([prod(divisors(n)) for n in range(1, 51)]) # Indranil Ghosh, Mar 22 2017
    
  • Python
    from math import isqrt
    from sympy import divisor_count
    def A007955(n):
        d = divisor_count(n)
        return isqrt(n)**d if d % 2 else n**(d//2) # Chai Wah Wu, Jan 05 2022
    
  • Sage
    [prod(divisors(n)) for n in (1..100)] # Giuseppe Coppoletta, Dec 16 2014
    
  • Sage
    [n^(sigma(n,0)/2) for n in (1..49)] # Stefano Spezia, Jul 14 2025
    
  • Scheme
    ;; A naive stand-alone implementation:
    (define (A007955 n) (let loop ((d n) (m 1)) (cond ((zero? d) m) ((zero? (modulo n d)) (loop (- d 1) (* m d))) (else (loop (- d 1) m)))))
    ;; Faster, if A000005 and A000196 are available:
    (define (A007955 n) (A000196 (expt n (A000005 n))))
    ;; Antti Karttunen, Mar 22 2017
    

Formula

a(n) = n^(d(n)/2) = n^(A000005(n)/2). Since a(n) = Product_(d|n) d = Product_(d|n) n/d, we have a(n)*a(n) = Product_(d|n) d*(n/d) = Product_(d|n) n = n^(tau(n)), whence a(n) = n^(tau(n)/2).
a(p^k) = p^A000217(k). - Enrique Pérez Herrero, Jul 22 2011
a(n) = A078599(n) * A178649(n). - Reinhard Zumkeller, Feb 06 2012
a(n) = A240694(n, A000005(n)). - Reinhard Zumkeller, Apr 10 2014
From Antti Karttunen, Mar 22 2017: (Start)
a(n) = A000196(n^A000005(n)). [From the original formula.]
A001222(a(n)) = A069264(n). [See Geoffrey Critzer's Feb 03 2015 comment in the latter sequence.]
A046523(a(n)) = A283995(n).
(End)
a(n) = Product_{k=1..n} gcd(n,k)^(1/phi(n/gcd(n,k))) = Product_{k=1..n} (n/gcd(n,k))^(1/phi(n/gcd(n,k))) where phi = A000010. - Richard L. Ollerton, Nov 07 2021
From Bernard Schott, Jan 11 2022: (Start)
a(n) = n^2 iff n is in A007422.
a(n) = n^3 iff n is in A162947.
a(n) = n^4 iff n is in A111398.
a(n) = n^5 iff n is in A030628.
a(n) = n^(3/2) iff n is in A280076. (End)
From Amiram Eldar, Oct 29 2022: (Start)
a(n) = n * A007956(n).
Sum_{k=1..n} 1/a(k) ~ log(log(n)) + c + O(1/log(n)), where c is a constant (Weiyi, 2004; Sandor and Crstici, 2004). (End)
a(n) = Product_{k=1..n} (n * (1 - ceiling(n/k - floor(n/k))))/k + ceiling(n/k - floor(n/k)). - Adriano Steffler, Feb 08 2024

A030626 Numbers with exactly 8 divisors.

Original entry on oeis.org

24, 30, 40, 42, 54, 56, 66, 70, 78, 88, 102, 104, 105, 110, 114, 128, 130, 135, 136, 138, 152, 154, 165, 170, 174, 182, 184, 186, 189, 190, 195, 222, 230, 231, 232, 238, 246, 248, 250, 255, 258, 266, 273, 282, 285, 286, 290, 296, 297, 310, 318, 322, 328, 344, 345, 351, 354, 357, 366, 370, 374, 375, 376, 385, 399, 402
Offset: 1

Views

Author

Keywords

Comments

Since A119479(8)=7, there are never more than 7 consecutive terms. Runs of 7 consecutive terms start at 171897, 180969, 647385, ... (subsequence of A049053). - Ivan Neretin, Feb 08 2016

Crossrefs

Essentially the same as A111398.

Programs

  • Magma
    [n: n in [1..400] | DivisorSigma(0, n) eq 8]; // Vincenzo Librandi, Oct 05 2017
    
  • Maple
    select(numtheory:-tau=8, [$1..1000]); # Robert Israel, Dec 17 2014
  • Mathematica
    Select[Range[400], DivisorSigma[0, #]== 8 &] (* Vincenzo Librandi, Oct 05 2017 *)
  • PARI
    Vec(select(x->x==8,vector(500, i, numdiv(i)),1)) \\ Michel Marcus, Dec 17 2014
    
  • Python
    from sympy import divisor_count
    isok = lambda n: divisor_count(n) == 8
    print([n for n in range(1, 400) if isok(n)]) # Darío Clavijo, Oct 17 2023
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A030626(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x-sum(primepi(x//(k*m))-b for a,k in enumerate(primerange(integer_nthroot(x,3)[0]+1),1) for b,m in enumerate(primerange(k+1,isqrt(x//k)+1),a+1))-sum(primepi(x//p**3) for p in primerange(integer_nthroot(x,3)[0]+1))+primepi(integer_nthroot(x,4)[0])-primepi(integer_nthroot(x,7)[0]))
        return bisection(f,n,n) # Chai Wah Wu, Feb 21 2025

Formula

A000005(a(n))=8. - Juri-Stepan Gerasimov, Oct 10 2009
Equals A065036 (p*q^3) U A007304 (p*q*r) U A092759 (p^7). - Amarnath Murthy, Apr 21 2001

A048945 Numbers whose product of divisors is a fourth power.

Original entry on oeis.org

1, 24, 30, 40, 42, 54, 56, 66, 70, 78, 88, 102, 104, 105, 110, 114, 120, 128, 130, 135, 136, 138, 152, 154, 165, 168, 170, 174, 182, 184, 186, 189, 190, 195, 210, 216, 222, 230, 231, 232, 238, 246, 248, 250, 255, 256, 258, 264, 266, 270, 273, 280, 282, 285
Offset: 1

Views

Author

Keywords

Comments

Different from sequence of numbers which are the cube root of the product of their proper divisors. Compare A111398.

References

  • Amarnath Murthy, Generalization of Partition function, Introducing Smarandache Factor partitions, Smarandache Notions Journal, Vol. 11, 1-2-3, Spring 2000.
  • Amarnath Murthy, A note on Smarandache Divisor Sequence, Introducing Smarandache Factor partitions, Smarandache Notions Journal, Vol. 11, 1-2-3, Spring 2000.
  • Amarnath Murthy, Some more ideas on Smarandache Factor Partitions, Smarandache Notions Journal, Vol. 11, 1-2-3, Spring 2000.

Crossrefs

Programs

  • Maple
    for n from 2 to 1000 do it1 := sort(convert(divisors(n), list)): it2 := product(it1[j], j=1..nops(it1)-1): if it2 = n^3 then printf(`%d,`,n) fi: od:
  • Mathematica
    Select[Range[300], IntegerQ[(Times @@ Divisors[#])^(1/4)] &] (* Jean-François Alcover, Nov 05 2012 *)
  • PARI
    is(n)=my(f=factor(n)[,2]); gcd(f)*prod(i=1,#f,f[i]+1)%8==0 \\ Charles R Greathouse IV, Sep 18 2015

A162947 Numbers k such that the product of all divisors of k equals k^3.

Original entry on oeis.org

1, 12, 18, 20, 28, 32, 44, 45, 50, 52, 63, 68, 75, 76, 92, 98, 99, 116, 117, 124, 147, 148, 153, 164, 171, 172, 175, 188, 207, 212, 236, 242, 243, 244, 245, 261, 268, 275, 279, 284, 292, 316, 325, 332, 333, 338, 356, 363, 369, 387, 388, 404, 412, 423, 425, 428
Offset: 1

Views

Author

Claudio Meller, Jul 18 2009

Keywords

Comments

Contains the terms of A054753 (products p*q^2 of a prime p and the square of a different prime q), 1, and p^5, where p is prime.
Numbers k such that k^2 is equal to the product of proper divisors of k. - Juri-Stepan Gerasimov, May 03 2011

Examples

			18 is in the sequence because the product of its divisors is 1 * 2 * 3 * 6 * 9 * 18 = 18^3.
		

Crossrefs

Cf. A111398, A030628. - R. J. Mathar, Jul 19 2009
Cf. A008578 (product of divisors equals n), A007422 (product of divisors equals n^2).

Programs

  • Mathematica
    Select[Range[500], Surd[Times@@Divisors[#], 3] == # &] (* Harvey P. Dale, Mar 15 2017 *)
    Join[{1},Select[Range[430],DivisorSigma[0,#]==6 &]] (* Stefano Spezia, Jul 14 2025 *)
  • PARI
    isok(n) = my(d = divisors(n)); prod(i=1, #d, d[i]) == n^3; \\ Michel Marcus, Feb 04 2014
    
  • PARI
    \\ See Corneth link
    
  • Python
    from itertools import chain, count, islice
    from sympy import divisor_count
    def A162947_gen(): # generator of terms
        return chain((1,),filter(lambda n:divisor_count(n)==6,count(2)))
    A162947_list = list(islice(A162947_gen(),20)) # Chai Wah Wu, Jun 25 2022

Formula

{n: A007955(n) = A000578(n)}. - R. J. Mathar, Jul 19 2009
{1} UNION A030515. - R. J. Mathar, Jul 19 2009

Extensions

Edited by R. J. Mathar, Jul 19 2009

A292286 a(n) = k if the product of the divisors of n is n^k for some integer k, or -1 if no such k exists. For the ambiguous case, define a(1) = 0.

Original entry on oeis.org

0, 1, 1, -1, 1, 2, 1, 2, -1, 2, 1, 3, 1, 2, 2, -1, 1, 3, 1, 3, 2, 2, 1, 4, -1, 2, 2, 3, 1, 4, 1, 3, 2, 2, 2, -1, 1, 2, 2, 4, 1, 4, 1, 3, 3, 2, 1, 5, -1, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 6, 1, 2, 3, -1, 2, 4, 1, 3, 2, 4, 1, 6, 1, 2, 3, 3, 2, 4, 1, 5, -1, 2, 1, 6, 2, 2, 2, 4, 1, 6, 2, 3, 2, 2, 2, 6, 1, 3, 3, -1
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Sep 13 2017

Keywords

Comments

If the number of divisors (nd) of n > 1 is odd, then a(n) = -1, else a(n) = nd/2. - Michel Marcus, Sep 14 2017
First occurrence of k beginning with -1 is A293570(r). - Robert G. Wilson v, Oct 10 2017
Records occur for A293570(r): 4, 6, 12, 24, 48, 60, 192, 240, 3072, 12288, 196608, 786432, 12582912, 805306368, etc. - Robert G. Wilson v, Oct 10 2017

Examples

			a(10) = 2 because divisors of 10 are 1,2,5,10 with product 100 = 10^2.
		

Crossrefs

Numbers n such that the product of divisors of n is n^k: A000040 (k = 1), A007422 (k = 2), A162947 (k = 3), A111398 (k = 4), A030628 (k = 5), A030630 (k = 6).

Programs

  • Mathematica
    Table[Boole[n == 1] + If[OddQ@ #, -1, #/2] &@ DivisorSigma[0, n], {n, 100}] (* Michael De Vlieger, Sep 15 2017 *)
  • PARI
    a(n) = if (n==1, 0, my(nd = numdiv(n)); if (nd % 2, -1, nd/2)); \\ Michel Marcus, Sep 14 2017
    
  • PARI
    a(n)=my(k=numdiv(n)); if(k%2, if(n>1, -1, 0), k/2) \\ Charles R Greathouse IV, Sep 19 2017

Formula

a(1) = 0, a(A000290(n+1)) = -1, a(A000037(n+1)) = A056924(A000037(n+1)), where A000290 = the squares and A000037 = the nonsquares.

Extensions

Definition corrected by Charles R Greathouse IV, Sep 13 2017
Showing 1-6 of 6 results.