cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A032798 Numbers such that n(n+1)(n+2)...(n+12) / (n+(n+1)+(n+2)+...+(n+12)) is a multiple of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84
Offset: 1

Views

Author

Patrick De Geest, May 15 1998

Keywords

Comments

Equals natural numbers minus '7,13,20,26,33,...' (= previous term +6,+7,+6,+7,...).

Crossrefs

Formula

From Chai Wah Wu, Dec 17 2016: (Start)
a(n) = a(n-1) + a(n-11) - a(n-12) for n > 12.
G.f.: x*(x^11 + x^10 + x^9 + x^8 + x^7 + 2*x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)/(x^12 - x^11 - x + 1). (End)

A143974 Rectangular array R by antidiagonals: label each unit square in the first quadrant lattice by its northeast vertex (x,y) and mark those having x+y=1(mod 3); then R(m,n) is the number of marked unit squares in the rectangle [0,m]x[0,n].

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 1, 2, 2, 1, 1, 2, 3, 2, 1, 2, 3, 4, 4, 3, 2, 2, 4, 5, 5, 5, 4, 2, 2, 4, 6, 6, 6, 6, 4, 2, 3, 5, 7, 8, 8, 8, 7, 5, 3, 3, 6, 8, 9, 10, 10, 9, 8, 6, 3, 3, 6, 9, 10, 11, 12, 11, 10, 9, 6, 3, 4, 7, 10, 12, 13, 14, 14, 13, 12, 10, 7, 4, 4, 8, 11, 13, 15, 16, 16, 16, 15, 13, 11, 8, 4, 4, 8
Offset: 1

Views

Author

Clark Kimberling, Sep 06 2008

Keywords

Comments

Examples

			Northwest corner:
0 0 1 1 1 2
0 1 2 2 3 4
1 2 3 4 5 6
1 2 4 5 6 8
1 3 5 6 8 10
R(3,4) counts these marked squares: (1,3), (2,2), (3,1), (3,4).
		

Crossrefs

Formula

R(m,n)=floor(mn/3).

A032774 a(n) = floor( n*(n+1)*(n+2)*...*(n+6) / (n+(n+1)+(n+2)+...+(n+6)) ).

Original entry on oeis.org

0, 180, 1152, 4320, 12342, 29700, 63360, 123552, 224640, 386100, 633600, 1000182, 1527552, 2267460, 3283200, 4651200, 6462720, 8825652, 11866422, 15732000, 20592000, 26640900, 34100352, 43221600, 54288000, 67617642, 83566080, 102529152, 124945920, 151301700, 182131200
Offset: 0

Views

Author

Patrick De Geest, May 15 1998

Keywords

Comments

In general, such sequences a(n) = floor((Product_{m=0..k} n+i) / (Sum_{m=0..k} n+i)) have rational generating functions. - Georg Fischer, Feb 23 2021

Crossrefs

Cf. A004526 (k=2), A032765 (k=3), A032768 (k=4), A032771 (k=5), A032774 (k=6), A032777 (k=7), A032780 (k=8), A032790 (k=9).

Programs

  • Maple
    seq(coeff(series( -(6*x^10-36*x^9 + 90*x^8 - 120*x^7 - 90*x^6 - 108*x^5 - 102*x^4 - 108*x^3 - 72*x^2 - 180*x) / (-x^13+6*x^12 - 15*x^11+20*x^10 - 15*x^9+6*x^8 - x^7+x^6 - 6*x^5+15*x^4 - 20*x^3+15*x^2 - 6*x + 1) , x, n+1), x, n), n = 0..40); # Georg Fischer, Feb 23 2021
  • Mathematica
    Table[Floor[(Times @@ Range[n, n + 6])/(7 n + 21)], {n, 0, 30}] (* Harvey P. Dale, May 16 2020 *)

Extensions

More terms from Georg Fischer, Feb 23 2021

A143975 a(n) = floor(n*(n+3)/3).

Original entry on oeis.org

1, 3, 6, 9, 13, 18, 23, 29, 36, 43, 51, 60, 69, 79, 90, 101, 113, 126, 139, 153, 168, 183, 199, 216, 233, 251, 270, 289, 309, 330, 351, 373, 396, 419, 443, 468, 493, 519, 546, 573, 601, 630, 659, 689, 720, 751, 783, 816, 849, 883, 918, 953, 989, 1026, 1063, 1101
Offset: 1

Views

Author

Clark Kimberling, Sep 06 2008

Keywords

Comments

Fourth diagonal of A143974, associated with counting unit squares in a lattice.

Examples

			Main diagonal of A143974: (0,1,3,5,8,12,...) = A000212;
2nd diagonal: (0,2,4,6,10,14,18,...) = A128422;
3rd diagonal: (1,2,5,8,11,16,21,...) = A032765;
4th diagonal: (1,3,6,9,13,18,23,...) = A143975.
		

Crossrefs

Programs

  • Magma
    [Floor(n*(n+3)/3): n in [1..60]]; // Vincenzo Librandi, May 08 2011
  • Mathematica
    a[n_] := Floor[n*(n+3)/3]; Array[a, 60] (* Amiram Eldar, Oct 01 2022 *)

Formula

a(n) = floor(n*(n+3)/3).
From R. J. Mathar, Oct 05 2009: (Start)
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5).
G.f.: x*(-1 - x - x^2 + x^3)/( (1 + x + x^2) * (x-1)^3). (End)
9*a(n) = 3*n^2 + 9*n - 2 + A099837(n+3). - R. J. Mathar, Apr 26 2022
Sum_{n>=1} 1/a(n) = 4/3 + (tan((sqrt(13)+2)*Pi/6) - cot((sqrt(13)+1)*Pi/6)) * Pi/sqrt(13). - Amiram Eldar, Oct 01 2022
E.g.f.: (exp(x)*(3*x*(4 + x) - 2) + 2*exp(-x/2)*cos(sqrt(3)*x/2))/9. - Stefano Spezia, Oct 24 2022

A006066 Kobon triangles: maximal number of nonoverlapping triangles that can be formed from n lines drawn in the plane.

Original entry on oeis.org

0, 0, 1, 2, 5, 7, 11, 15, 21, 25, 32, 38, 47
Offset: 1

Views

Author

Keywords

Comments

The known values a = a(n) and upper bounds U (usually A032765(n)) with name of discoverer of the arrangement when known are as follows:
n a U [Found by]
------------------------------
1 0 0
2 0 0
3 1 1
4 2 2
5 5 5
6 7 7
7 11 11
8 15 16
9 21 21
10 25 25 [Grünbaum]
11 32 33 [32-triangle solutions found by Honma and Kabanovitch; proved maximal by Savchuk 2025]
12 38 38 [Kabanovitch]
13 47 47 [Kabanovitch]
14 >= 53 54 [Bader]
15 65 65 [Suzuki]
16 72 72 [Bader]
17 85 85 [Bader]
18 >= 93 94 [Bader]
19 107 107 [Wood]
20 >= 116 117 [Wood]
21 133 133 [Savchuk]
22 >= 143 144 [Savchuk]
23 161 161 [Savchuk]
24 >= 172 173 [Savchuk]
25 191 191 [Bartholdi]
26 ? 205
27 225 225 [Savchuk]
28 ? 239
29 261 261 [Bartholdi]
30 ? 276
31 299 299 [Wood]
32 ? 316
33 341 341 [Bartholdi]
Ed Pegg's web page gives the upper bound for a(6) as 8. But by considering all possible arrangements of 6 lines - the sixth term of A048872 - one can see that 8 is impossible. - N. J. A. Sloane, Nov 11 2007
Although they are somewhat similar, this sequence is strictly different from A084935, since A084935(12) = 48 exceeds the upper bound on a(12) from A032765. - Floor van Lamoen, Nov 16 2005
The name is sometimes incorrectly entered as "Kodon" triangles.
Named after the Japanese puzzle expert and mathematics teacher Kobon Fujimura (1903-1983). - Amiram Eldar, Jun 19 2021

Examples

			a(17) = 85 because the a configuration with 85 exists meeting the upper bound.
		

References

  • Nicolas Bartholdi, Jérémy Blanc, and Sébastien Loisel, "On simple arrangements of lines and pseudo-lines in P^2 and R^2 with the maximum number of triangles", 2008, in Goodman, Jacob E.; Pach, János; Pollack, Richard (eds.), Surveys on Discrete and Computational Geometry: Proceedings of the 3rd AMS-IMS-SIAM Joint Summer Research Conference "Discrete and Computational Geometry—Twenty Years Later" held in Snowbird, UT, June 18-22, 2006, Contemporary Mathematics, vol. 453, Providence, Rhode Island: American Mathematical Society, pp. 105-116, doi:10.1090/conm/453/08797, ISBN 978-0-8218-4239-3, MR 2405679
  • Martin Gardner, Wheels, Life and Other Mathematical Amusements, Freeman, NY, 1983, pp. 170, 171, 178. Mentions that the problem was invented by Kobon Fujimura.
  • Branko Grünbaum, Convex Polytopes, Wiley, NY, 1967; p. 400 shows that a(10) >= 25.
  • Viatcheslav Kabanovitch, Kobon Triangle Solutions, Sharada (Charade, by the Russian puzzle club Diogen), pp. 1-2, June 1999.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Formula

An upper bound on this sequence is given by A032765.
For any odd n > 1, if n == 1 (mod 6), a(n) <= (n^2 - (2n + 2))/3; in other odd cases, a(n) <= (n^2 - 2n)/3. For any even n > 0, if n == 4 (mod 6), a(n) <= (n^2 - (2n + 2))/3, otherwise a(n) <= (n^2 - 2n)/3. - Sergey Pavlov, Feb 11 2017
The upper bound for even n can be improved: floor(n(n-7/3)/3), proven by Bartholdi et. al.

Extensions

a(15) = 65 found by Toshitaka Suzuki on Oct 02 2005. - Eric W. Weisstein, Oct 04 2005
Grünbaum reference from Anthony Labarre, Dec 19 2005
Additional links to Japanese web sites from Alexandre Wajnberg, Dec 29 2005 and Anthony Labarre, Dec 30 2005
A perfect solution for 13 lines was found in 1999 by Kabanovitch. - Ed Pegg Jr, Feb 08 2006
Updated with results from Johannes Bader (johannes.bader(AT)tik.ee.ethz.ch), Dec 06 2007, who says "Acknowledgments and dedication to Corinne Thomet".
a(11)-a(13) from Eric W. Weisstein, Jul 26 2025

A032780 a(n) = n(n+1)(n+2)...(n+8) / (n+(n+1)+(n+2)+...+(n+8)).

Original entry on oeis.org

0, 8064, 67200, 316800, 1108800, 3203200, 8072064, 18345600, 38438400, 75398400, 140025600, 248312064, 423259200, 697132800, 1114220800, 1734163200, 2635928064, 3922512000, 5726448000, 8216208000, 11603592000, 16152200064, 22187088000, 30105712000
Offset: 0

Views

Author

Patrick De Geest, May 15 1998

Keywords

Comments

a(5n+1) == 4 modulo 10.
The product of any k consecutive integers is divisible by the sum of the same k integers for odd nonprime k's: 1 (trivial case), 9 (this sequence), 15, etc. - Zak Seidov, Mar 18 2014

Crossrefs

Programs

  • Mathematica
    nn = 9; Table[c = Range[n, n + nn - 1]; Times @@ c/Total[c], {n, 0, 25}] (* T. D. Noe, Mar 18 2014 *)
  • PARI
    a(n) = prod(i=0, 8, n+i)/sum(i=0, 8, n+i); \\ Michel Marcus, Mar 18 2014

Formula

a(-n) = a(n-8) for all n in Z. - Michael Somos, Mar 18 2014
a(n) = 64 * A104678(n-1) = 64 * binomial(n+3, 4) * binomial(n+8, 4). - Michael Somos, Mar 18 2014
From Chai Wah Wu, Dec 17 2016: (Start)
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n > 8.
G.f.: 64*x*(-x^4 + 9*x^3 - 36*x^2 + 84*x - 126)/(x - 1)^9. (End)

Extensions

Typo in name fixed by Zak Seidov, Mar 18 2014
More terms from Michel Marcus, Mar 18 2014

A032796 Numbers that are congruent to {1, 2, 3, 5, 6} mod 7.

Original entry on oeis.org

1, 2, 3, 5, 6, 8, 9, 10, 12, 13, 15, 16, 17, 19, 20, 22, 23, 24, 26, 27, 29, 30, 31, 33, 34, 36, 37, 38, 40, 41, 43, 44, 45, 47, 48, 50, 51, 52, 54, 55, 57, 58, 59, 61, 62, 64, 65, 66, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 89, 90, 92, 93, 94, 96, 97, 99
Offset: 1

Views

Author

Patrick De Geest, May 15 1998

Keywords

Comments

If k is a term, then k*(k+1)*(k+2)*...*(k+6)/(k+(k+1)+(k+2)+...+(k+6)) is a multiple of k.

Crossrefs

Programs

  • Magma
    [n: n in [0..120] | n mod 7 in {1, 2, 3, 5, 6}]; // Vincenzo Librandi, Dec 29 2010
  • Mathematica
    #+{1,2,3,5,6}&/@(7*Range[0,15])//Flatten (* or *) LinearRecurrence[ {1,0,0,0,1,-1},{1,2,3,5,6,8},100] (* Harvey P. Dale, Oct 07 2018 *)

Formula

Equals natural numbers minus '4, 7, 11, 14, 18, ...' (= previous term +3, +4, +3, +4, ...).
G.f.: x*(x^5 + x^4 + 2*x^3 + x^2 + x + 1)/((1-x)*(1-x^5)).
a(n) = (m^3 - 6*m^2 + 17*m + 6*(7*floor(n/5)-1))/6, where m = n mod 5. - Luce ETIENNE,Oct 17 2018

A032767 a(n) = floor ( n(n+1)(n+2)(n+3) / (n+(n+1)+(n+2)+(n+3)) ).

Original entry on oeis.org

0, 2, 8, 20, 38, 64, 100, 148, 208, 282, 373, 480, 606, 753, 921, 1112, 1328, 1571, 1841, 2140, 2471, 2833, 3229, 3661, 4129, 4635, 5182, 5769, 6399, 7074, 7794, 8561, 9377, 10244, 11162, 12133, 13160, 14242, 15382, 16582, 17842, 19164
Offset: 0

Views

Author

Patrick De Geest, May 15 1998

Keywords

Crossrefs

Programs

  • Maple
    A032767 := proc(n)
            n*(n+1)*(n+2)*(n+3) /(4*n+6) ;
            floor(%) ;
    end proc: # R. J. Mathar, May 20 2013
  • Mathematica
    Table[Floor[Times@@(n+Range[0,3])/Total[n+Range[0,3]]],{n,0,50}] (* Harvey P. Dale, Oct 18 2024 *)

Formula

The g.f. has denominator (1-x)^4(1-x^16). - Ralf Stephan, May 16 2005

A032784 Numbers k such that k(k+1)(k+2)...(k+11) / (k+(k+1)+(k+2)+...+(k+11)) is an integer.

Original entry on oeis.org

0, 2, 5, 7, 8, 11, 12, 17, 19, 22, 26, 32, 33, 35, 44, 47, 55, 62, 68, 77, 82, 89, 107, 110, 116, 117, 132, 143, 152, 176, 187, 197, 215, 242, 257, 264, 278, 297, 332, 341, 362, 407, 418, 440, 467, 539, 572, 602, 607, 656, 737, 782, 803, 845, 902, 957, 1007, 1034
Offset: 1

Views

Author

Patrick De Geest, May 15 1998

Keywords

Comments

(d-11)/2 where d>=7 is a divisor of 36018675. In particular, the sequence is finite. - Robert Israel, Jul 12 2018

Crossrefs

Programs

  • Maple
    sort(convert(select(type,map(t -> (t-11)/2,numtheory:-divisors(36018675)),nonnegint),list));
  • Mathematica
    Select[Range[0,1100],IntegerQ[Times@@Range[#,#+11]/Total[Range[#,#+11]]]&] (* Harvey P. Dale, Sep 02 2016 *)

Extensions

Definition corrected by Harvey P. Dale, Sep 02 2016
Offset changed by Robert Israel, Jul 12 2018

A032785 Numbers k such that k*(k+1)*(k+2) ... (k+13) / (k+(k+1)+(k+2)+ ... +(k+13)) is an integer.

Original entry on oeis.org

0, 1, 4, 6, 7, 10, 11, 13, 16, 21, 25, 26, 31, 32, 34, 39, 43, 46, 52, 54, 61, 65, 76, 78, 81, 88, 91, 106, 109, 115, 130, 131, 142, 151, 156, 169, 175, 186, 196, 208, 221, 241, 247, 256, 277, 286, 296, 331, 340, 351, 358, 403, 406, 416, 417, 439, 466, 481, 494
Offset: 1

Views

Author

Patrick De Geest, May 15 1998

Keywords

Comments

(d-13)/2 for divisors d>=13 of 2608781175. In particular, the sequence is finite. - Robert Israel, Jul 13 2018

Crossrefs

Programs

  • Maple
    seq((t-13)/2, t=select(`>=`,numtheory:-divisors(2608781175),13)); # Robert Israel, Jul 13 2018
  • Mathematica
    Select[Range[0,500],IntegerQ[Times@@Range[#,#+13]/Total[Range[ #, #+13]]]&] (* Harvey P. Dale, Sep 02 2016 *)

Extensions

Definition corrected by Harvey P. Dale, Sep 02 2016
Showing 1-10 of 16 results. Next