A034444 a(n) is the number of unitary divisors of n (d such that d divides n, gcd(d, n/d) = 1).
1, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 4, 2, 4, 4, 2, 2, 4, 2, 4, 4, 4, 2, 4, 2, 4, 2, 4, 2, 8, 2, 2, 4, 4, 4, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 4, 4, 4, 4, 4, 2, 8, 2, 4, 4, 2, 4, 8, 2, 4, 4, 8, 2, 4, 2, 4, 4, 4, 4, 8, 2, 4, 2, 4, 2, 8, 4, 4, 4, 4, 2, 8, 4, 4, 4, 4, 4, 4, 2, 4, 4, 4, 2, 8, 2, 4, 8
Offset: 1
Examples
a(12) = 4 because the four unitary divisors of 12 are 1, 3, 4, 12, and also because the four squarefree divisors of 12 are 1, 2, 3, 6.
References
- R. K. Guy, Unsolved Problems in Number Theory, Sect. B3.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- O. Bagdasar, On some functions involving the lcm and gcd of integer tuples, Scientific Publications of the State University of Novi Pazar, Appl. Maths. Inform. and Mech., Vol. 6, 2 (2014), 91--100.
- Masum Billal, Number of Ways To Write as Product of Co-prime Numbers, arXiv:1909.07823 [math.GM], 2019.
- Steven R. Finch, Unitarism and Infinitarism, February 25, 2004. [Cached copy, with permission of the author]
- Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 49-50.
- Lorenz Halbeisen, A number-theoretic conjecture and its implication for set theory, Acta Math. Univ. Comenianae 74(2) (2005), 243-254.
- Lorenz Halbeisen and Norbert Hungerbuehler, Number theoretic aspects of a combinatorial function, Notes on Number Theory and Discrete Mathematics 5 (1999), 138-150.
- Jon Maiga, Upper bound of Fibonacci entry points, 2019.
- OEIS Wiki, Shadow transform.
- N. J. A. Sloane, Transforms.
- Eric Weisstein's World of Mathematics, Unitary Divisor.
- Eric Weisstein's World of Mathematics, Unitary Divisor Function.
- Wikipedia, Unitary divisor.
- Index entries for sequences computed from exponents in factorization of n
Crossrefs
Cf. A077610, A048105, A000173, A013928, A000079, A001221, A002110, A034448, A047994, A061142, A277561.
Sum of the k-th powers of the squarefree divisors of n for k=0..10: this sequence (k=0), A048250 (k=1), A351265 (k=2), A351266 (k=3), A351267 (k=4), A351268 (k=5), A351269 (k=6), A351270 (k=7), A351271 (k=8), A351272 (k=9), A351273 (k=10).
Programs
-
Haskell
a034444 = length . a077610_row -- Reinhard Zumkeller, Feb 12 2012
-
Magma
[#[d:d in Divisors(n)|Gcd(d,n div d) eq 1]:n in [1..110]]; // Marius A. Burtea, Jan 11 2020
-
Magma
[&+[Abs(MoebiusMu(d)):d in Divisors(n)]:n in [1..110]]; // Marius A. Burtea, Jan 11 2020
-
Maple
with(numtheory): for n from 1 to 200 do printf(`%d,`,2^nops(ifactors(n)[2])) od: with(numtheory); # returns the number of unitary divisors of n and a list of them f:=proc(n) local ct,i,t1,ans; ct:=0; ans:=[]; t1:=divisors(n); for i from 1 to nops(t1) do d:=t1[i]; if igcd(d,n/d)=1 then ct:=ct+1; ans:=[op(ans),d]; fi; od: RETURN([ct,ans]); end; # N. J. A. Sloane, May 01 2013 # alternative Maple program: a:= n-> 2^nops(ifactors(n)[2]): seq(a(n), n=1..105); # Alois P. Heinz, Jan 23 2024 a := n -> 2^NumberTheory:-NumberOfPrimeFactors(n, distinct): # Peter Luschny, May 13 2025
-
Mathematica
a[n_] := Count[Divisors[n], d_ /; GCD[d, n/d] == 1]; a /@ Range[105] (* Jean-François Alcover, Apr 05 2011 *) Table[2^PrimeNu[n],{n,110}] (* Harvey P. Dale, Jul 14 2011 *)
-
PARI
a(n)=1<
Charles R Greathouse IV, Feb 11 2011 -
PARI
for(n=1, 100, print1(direuler(p=2, n, (1+X)/(1-X))[n], ", ")) \\ Vaclav Kotesovec, Sep 26 2020
-
Python
from sympy import divisors, gcd def a(n): return sum(1 for d in divisors(n) if gcd(d, n//d)==1) # Indranil Ghosh, Apr 16 2017
-
Python
from sympy import primefactors def a(n): return 2**len(primefactors(n)) print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Apr 16 2017
-
Scheme
(define (A034444 n) (if (= 1 n) n (* 2 (A034444 (A028234 n))))) ;; Antti Karttunen, May 29 2017
Formula
a(n) = Sum_{d|n} abs(mu(n)) = 2^(number of different primes dividing n) = 2^A001221(n), with mu(n) = A008683(n). [Added Möbius formula. - Wolfdieter Lang, Jan 11 2020]
a(n) = Product_{ primes p|n } (1 + Legendre(1, p)).
Multiplicative with a(p^k)=2 for p prime and k>0. - Henry Bottomley, Oct 25 2001
a(n) = Sum_{d|n} tau(d^2)*mu(n/d), Dirichlet convolution of A048691 and A008683. - Benoit Cloitre, Oct 03 2002
Dirichlet generating function: zeta(s)^2/zeta(2s). - Franklin T. Adams-Watters, Sep 11 2005
Inverse Mobius transform of A008966. - Franklin T. Adams-Watters, Sep 11 2005
Asymptotically [Finch] the cumulative sum of a(n) = Sum_{n=1..N} a(n) ~ (6/(Pi^2))*N*log(N) + (6/(Pi^2))*(2*gamma - 1 - (12/(Pi^2))*zeta'(2))*N + O(sqrt(N)). - Jonathan Vos Post, May 08 2005 [typo corrected by Vaclav Kotesovec, Sep 13 2018]
a(n) = Sum_{d|n} floor(rad(d)/d), where rad is A007947 and floor(rad(n)/n) = A008966(n). - Enrique Pérez Herrero, Nov 13 2009
a(n) = A000005(n) - A048105(n); number of nonzero terms in row n of table A225817. - Reinhard Zumkeller, Jul 30 2013
G.f.: Sum_{n>0} A008966(n)*x^n/(1-x^n). - Mircea Merca, Feb 25 2014
a(n) = Sum_{d|n} lambda(d)*mu(d), where lambda is A008836. - Enrique Pérez Herrero, Apr 27 2014
L.g.f.: -log(Product_{k>=1} (1 - mu(k)^2*x^k)^(1/k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Jul 30 2018
Sum_{d|n, gcd(d, n/d) = 1} a(d) * (-1)^omega(n/d) = 1. - Amiram Eldar, May 29 2020
Extensions
More terms from James Sellers, Jun 20 2000
Comments