cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A007691 Multiply-perfect numbers: n divides sigma(n).

Original entry on oeis.org

1, 6, 28, 120, 496, 672, 8128, 30240, 32760, 523776, 2178540, 23569920, 33550336, 45532800, 142990848, 459818240, 1379454720, 1476304896, 8589869056, 14182439040, 31998395520, 43861478400, 51001180160, 66433720320, 137438691328, 153003540480, 403031236608
Offset: 1

Views

Author

Keywords

Comments

sigma(n)/n is in A054030.
Also numbers such that the sum of the reciprocals of the divisors is an integer. - Harvey P. Dale, Jul 24 2001
Luca's solution of problem 11090, which proves that for k>1 there are an infinite number of n such that n divides sigma_k(n), does not apply to this sequence. However, it is conjectured that this sequence is also infinite. - T. D. Noe, Nov 04 2007
Numbers k such that sigma(k) is divisible by all divisors of k, subsequence of A166070. - Jaroslav Krizek, Oct 06 2009
A017666(a(n)) = 1. - Reinhard Zumkeller, Apr 06 2012
Bach, Miller, & Shallit show that this sequence can be recognized in polynomial time with arbitrarily small error by a probabilistic Turing machine; that is, this sequence is in BPP. - Charles R Greathouse IV, Jun 21 2013
Conjecture: If n is such that 2^n-1 is in A066175 then a(n) is a triangular number. - Ivan N. Ianakiev, Aug 26 2013
Conjecture: Every multiply-perfect number is practical (A005153). I've verified this conjecture for the first 5261 terms with abundancy > 2 using Achim Flammenkamp's data. The even perfect numbers are easily shown to be practical, but every practical number > 1 is even, so a weak form says every even multiply-perfect number is practical. - Jaycob Coleman, Oct 15 2013
Numbers such that A054024(n) = 0. - Michel Marcus, Nov 16 2013
Numbers n such that k(n) = A229110(n) = antisigma(n) mod n = A024816(n) mod n = A000217(n) mod n = (n(n+1)/2) mod n = A142150(n). k(n) = n/2 for even n; k(n) = 0 for odd n (for number 1 and eventually odd multiply-perfect numbers n > 1). - Jaroslav Krizek, May 28 2014
The only terms m > 1 of this sequence that are not in A145551 are m for which sigma(m)/m is not a divisor of m. Conjecture: after 1, A323653 lists all such m (and no other numbers). - Antti Karttunen, Mar 19 2021

Examples

			120 is OK because divisors of 120 are {1,2,3,4,5,6,8,10,12,15,20,24,30,40,60,120}, the sum of which is 360=120*3.
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 22.
  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 176.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • I. Stewart, L'univers des nombres, "Les nombres multiparfaits", Chapter 15, pp. 82-88, Belin-Pour La Science, Paris 2000.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 141-148.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1987, pp. 135-136.

Crossrefs

Complement is A054027. Cf. A000203, A054030.
Cf. A000396, A005820, A027687, A046060, A046061, for subsequences of terms with quotient sigma(n)/n = 2..6.
Subsequence of the following sequences: A011775, A071707, A083865, A089748 (after the initial 1), A102783, A166070, A175200, A225110, A226476, A237719, A245774, A246454, A259307, A263928, A282775, A323652, A336745, A340864. Also conjectured to be a subsequence of A005153, of A307740, and after 1 also of A295078.
Various number-theoretical functions applied to these numbers: A088843 [tau], A098203 [phi], A098204 [gcd(a(n),phi(a(n)))], A134665 [2-adic valuation], A307741 [sigma], A308423 [product of divisors], A320024 [the odd part], A134740 [omega], A342658 [bigomega], A342659 [smallest prime not dividing], A342660 [largest prime divisor].
Positions of ones in A017666, A019294, A094701, A227470, of zeros in A054024, A082901, A173438, A272008, A318996, A326194, A341524. Fixed points of A009194.
Cf. A069926, A330746 (left inverses, when applied to a(n) give n).
Cf. (other related sequences) A007539, A066135, A066961, A093034, A094467, A134639, A145551, A019278, A194771 [= 2*a(n)], A219545, A229110, A262432, A335830, A336849, A341608.

Programs

  • Haskell
    a007691 n = a007691_list !! (n-1)
    a007691_list = filter ((== 1) . a017666) [1..]
    -- Reinhard Zumkeller, Apr 06 2012
    
  • Mathematica
    Do[If[Mod[DivisorSigma[1, n], n] == 0, Print[n]], {n, 2, 2*10^11}] (* or *)
    Transpose[Select[Table[{n, DivisorSigma[-1, n]}, {n, 100000}], IntegerQ[ #[[2]] ]& ] ][[1]]
    (* Third program: *)
    Select[Range[10^6], IntegerQ@ DivisorSigma[-1, #] &] (* Michael De Vlieger, Mar 19 2021 *)
  • PARI
    for(n=1,1e6,if(sigma(n)%n==0, print1(n", ")))
    
  • Python
    from sympy import divisor_sigma as sigma
    def ok(n): return sigma(n, 1)%n == 0
    print([n for n in range(1, 10**4) if ok(n)]) # Michael S. Branicky, Jan 06 2021

Extensions

More terms from Jud McCranie and then from David W. Wilson.
Incorrect comment removed and the crossrefs-section reorganized by Antti Karttunen, Mar 20 2021

A066135 a(n) = least number m > 1 such that sigma_n(m) = k*m for some k.

Original entry on oeis.org

6, 10, 6, 34, 6, 10, 6, 84, 6, 10, 6, 34, 6, 10, 6, 84, 6, 10, 6, 34, 6, 10, 6, 194, 6, 10, 6, 34, 6, 10, 6, 84, 6, 10, 6, 34, 6, 10, 6, 84, 6, 10, 6, 34, 6, 10, 6, 228, 6, 10, 6, 34, 6, 10, 6, 84, 6, 10, 6, 34, 6, 10, 6, 84, 6, 10, 6, 34, 6, 10, 6, 194, 6, 10, 6
Offset: 1

Views

Author

Labos Elemer, Dec 06 2001

Keywords

Comments

a(n) <= 2p, where p = A002586(n) is the smallest prime factor of (1 + 2^n). (Proof. Since sigma_n(2p) = (1 + 2^n)(1 + p^n) and p is odd, 2p divides sigma_n(2p).) - Jonathan Sondow, Nov 23 2012

Crossrefs

Cf. A218860, A218861 (unique values and where they first occur).

Programs

  • Mathematica
    Table[m = 2; While[Mod[DivisorSigma[n, m], m] > 0, m++]; m, {n, 100}] (* T. D. Noe, Nov 23 2012 *)

Formula

Sum{d^n} = ka(n), d runs over the divisors of a(n), where k is an integer and a(n) is the smallest suitable number.

Extensions

Definition and formulas corrected by Jonathan Sondow, Nov 23 2012

A229996 For every positive integer m, let u(m) = (d(1),d(2),...,d(k)) be the unitary divisors of m. The sequence (a(n)) consists of successive numbers m which d(k)/d(1) + d(k-1)/d(2) + ... + d(k)/d(1) is an integer.

Original entry on oeis.org

1, 10, 65, 130, 260, 340, 1105, 1972, 2210, 4420, 8840, 9860, 15650, 20737, 32045, 41474, 44200, 51272, 55250, 64090, 75140, 82948, 103685, 128180, 207370, 207553, 221000, 256360, 352529, 414740, 415106, 512720, 532100, 705058, 759025, 813800, 829480, 830212
Offset: 1

Views

Author

Clark Kimberling, Oct 31 2013

Keywords

Comments

The integer sums d(k)/d(1) + d(k-1)/d(2) + ... + d(k)/d(1) are given by A229999. - Clark Kimberling, Jun 16 2018
Also numbers m such that the sum of the squares of the unitary divisors of m is divisible by m (the unitary version of A046762). - Amiram Eldar, Jun 16 2018

Examples

			The first 10 sums: 1, 5/2, 10/3, 17/4, 26/5, 25/3, 50/7, 65/8, 82/9, 13, so that a(1) = 1 and a(10) = 13.
		

Crossrefs

Programs

  • Mathematica
    z = 1000; r[n_] := Select[Divisors[n], GCD[#, n/#] == 1 &]; k[n_] := Length[r[n]];
    t[n_] := Table[r[n][[k[n] + 1 - i]]/r[n][[k[1] + i - 1]], {i, 1, k[n]}];
    s = Table[Plus @@ t[n], {n, 1, z}]; a[n_] := If[IntegerQ[s[[n]]], 1, 0]; u = Table[a[n], {n, 1, z}]; Flatten[Position[u, 1]]  (* A229996 *)
    usigma2[n_] :=  If[n == 1, 1, Times @@ (1 + Power @@@ FactorInteger[n]^2)]; seqQ[n_] := Divisible[usigma2[n], n]; Select[Range[10^6], seqQ] (* Amiram Eldar, Jun 16 2018 *)
  • PARI
    is(n) = {my(f = factor(n)); !(prod(i = 1, #f~, f[i,1]^(2*f[i,2]) + 1) % n);} \\ Amiram Eldar, Jun 16 2024

Extensions

Definition corrected by Clark Kimberling, Jun 16 2018

A066284 a(n) = A066135(4*n).

Original entry on oeis.org

34, 84, 34, 84, 34, 194, 34, 84, 34, 84, 34, 228, 34, 84, 34, 84, 34, 194, 34, 84, 34, 84, 34, 228, 34, 84, 34, 84, 34, 194, 34, 84, 34, 84, 34, 386, 34, 84, 34, 84, 34, 194, 34, 84, 34, 84, 34, 228, 34, 84, 34, 84, 34, 194, 34, 84, 34, 84, 34, 228, 34, 84, 34, 84, 34, 194
Offset: 1

Views

Author

Labos Elemer, Dec 11 2001

Keywords

Comments

a(n) <= 2p, where p = A002586(4n) is the least prime factor of (1 + 16^n). (See the Comment in A066135.) - Jonathan Sondow, Nov 23 2012

Examples

			First 3 terms correspond to entries of other sequences as follows: a(1)=A046763(2), a(2)=A055712(2), a(3)=A055716(2).
From _Michael De Vlieger_, Jul 17 2017: (Start)
First position of values, with observations pertaining to values for 1 <= n <= 3000:
    Value   Position   Observations:
    --------------------------------
       34     1        All odd.
       84     2        In A047235.
      194     6        In A017593.
      228    12
      386    36
     1282    72
     1538   144
     3084   288
   147468   576
     1956   864
  1046532  1152
    24578  2304
     3252  2880
(End)
		

Crossrefs

Programs

  • Mathematica
    Table[m = 2; While[Mod[DivisorSigma[4 n, m], m] > 0, m++]; m, {n, 66}] (* Michael De Vlieger, Jul 17 2017 *)
  • PARI
    a(n) = {n *= 4; my(m = 2); while (sigma(m, n) % m, m++); m;} \\ Michel Marcus, Oct 02 2016

Formula

a(n) = Min{x : sigma_4n(x) mod x = 0, x > 1}

A140362 Semiprimes pq that divide the sum of the squares of their divisors, 1+p^2+q^2+(pq)^2.

Original entry on oeis.org

10, 65, 20737
Offset: 1

Views

Author

Mohamed Bouhamida, Jul 22 2008, Jul 27 2008

Keywords

Comments

6 is the smallest integer n which is the product of two distinct primes and which divides the sum of the cubes of the divisors of n. Are there other numbers with this property?
Using Pell equations and a Fibonacci identity, Max Alekseyev and I have shown that all terms are the product of prime Fibonacci numbers whose indices are twin primes. The first three terms are Fib(3)*Fib(5), Fib(5)*Fib(7) and Fib(11)*Fib(13). The other two known terms are Fib(431)*Fib(433) and Fib(569)*Fib(571), huge numbers that are in the b-file. The sequence probably has no additional terms. - T. D. Noe, Jul 27 2008
Let a, b, c and d be consecutive odd-indexed Fibonacci numbers. Then it can be proved that 1 + b^2 + c^2 + (bc)^2 = abcd, which shows that bc divides 1 + b^2 + c^2 + (bc)^2. Hence if b and c are prime, then bc is in this sequence. - T. D. Noe, Jul 27 2008
Empirical search suggests that A067558(a(n))/A032741(a(n)) = a(n). A032741(a(n)) = 3 for all n by definition of semiprime. A067558(a(n)) must also then be divisible by 3. a(n) can be called the n-th "perfect mean square aliquot number". - William Krier, Dec 16 2024

Examples

			10 divides (1^2 + 2^2 + 5^2) giving 3 - the number of proper divisors of semiprime 10.
65 divides (1^2 + 5^2 + 13^2) giving 3 - the number of proper divisors of semiprime 65.
20737 divides (1^2 + 89^2 + 233^2) giving 3 - the number of proper divisors of semiprime 20737.
		

Crossrefs

Programs

  • PARI
    isok(n) = sigma(n, 2) - n^2 == 3*n; \\ Michel Marcus, Jun 24 2014

A055715 Numbers k such that k | sigma_11(k).

Original entry on oeis.org

1, 6, 28, 120, 402, 496, 644, 672, 920, 1366, 1608, 1932, 2680, 2760, 3417, 3966, 4098, 4623, 4975, 5152, 6210, 6834, 8040, 8128, 8280, 9246, 9528, 9950, 12294, 13668, 15008, 15456, 15864, 16392, 18492, 19900, 24120, 24840, 25954, 27320, 27336, 29850, 30240, 32760
Offset: 1

Views

Author

Robert G. Wilson v, Jun 09 2000

Keywords

Comments

sigma_11(k) is the sum of the 11th powers of the divisors of k (A013959).

Crossrefs

Programs

  • Mathematica
    Do[If[Mod[DivisorSigma[11, n], n]==0, Print[n]], {n, 1, 40000}]
  • PARI
    isok(k) = (sigma(k, 11) % k) == 0; \\ Michel Marcus, Nov 09 2019

Extensions

a(37)-a(40) corrected and more terms added by Amiram Eldar, Nov 09 2019

A076230 Numbers k such that sigma_2(k)/k and sigma_4(k)/k are integers.

Original entry on oeis.org

1, 84, 435708, 986076, 1441188, 6066396, 7407036, 16763292, 18735444, 78863148, 260855028, 318502548, 1340673516, 3391115364, 10829086632, 45076171140, 45582899544, 57648961188, 77314641768, 128293717860, 149098104540, 174975241896, 440359518060, 461191689504
Offset: 1

Views

Author

Labos Elemer, Oct 03 2002

Keywords

Examples

			For k = 6066396, sigma_2(k)/k = 9156979, sigma_4(k)/k = 241153415598179286943.
		

Crossrefs

Intersection of A046762 and A046764.

Programs

  • Magma
    [n: n in [1..10000000]|IsIntegral(DivisorSigma(2,n)/n) and IsIntegral(DivisorSigma(4,n)/n)]; // Marius A. Burtea, Aug 28 2019
  • Mathematica
    Select[Range[10^7], And @@ Divisible[DivisorSigma[{2, 4}, #], #] &] (* Amiram Eldar, Jan 20 2020 *)
  • PARI
    isok(n) = !(sigma(n, 2) % n) && !(sigma(n, 4) % n); \\ Michel Marcus, Aug 28 2019
    

Extensions

More terms from T. D. Noe, Apr 11 2006
a(11)-a(12) from Michel Marcus, Aug 28 2019
a(13)-a(18) from Amiram Eldar, Jan 20 2020
a(19)-a(24) from Giovanni Resta, Jan 21 2020

A118076 Numbers n such that n divides sigma_(2^k)(n), the sum of the 2^k powers of the divisors of n, for all k>0.

Original entry on oeis.org

1, 84, 435708, 986076, 1441188, 6066396, 18735444, 78863148
Offset: 1

Views

Author

T. D. Noe, Apr 11 2006

Keywords

Comments

Although these numbers have been tested up to k=20, it is conjectured that n divides sigma_(2^k)(n) for all k>0. Intersection of A046762 and A066292.
Let d be the vector of divisors of n. The sequence d^(2^k) mod n has some period p. Thus if n divides sigma_(2^k)(n) for one period, then n divides sigma_(2^k)(n) for all k. For these n, the first period ends for k<14. Hence it is easy to verify divisibility for all k. Intersection of A046762 and A066292. - T. D. Noe, Apr 12 2006

Examples

			n=84 is here because 84 divides each one of sigma_4(n)=53771172, sigma_8(n)=2488859101224132, sigma_16(n)=6144339637187846520573009496452, etc.
		

Crossrefs

Cf. A076230 (n divides sigma_2(n) and sigma_4(n)).

Programs

  • Mathematica
    t={}; Do[If[Mod[DivisorSigma[2,n],n]==0, AppendTo[t,n]], {n,10^8}]; Do[t=Select[t,Mod[DivisorSigma[2^k,# ],# ]==0&],{k,2,20}]; t

A332736 Numbers k such that the sum of the norm of divisors of k in Gaussian integers is divisible by k.

Original entry on oeis.org

1, 14, 15, 30, 60, 70, 120, 210, 315, 350, 630, 1260, 1612, 1680, 1860, 2520, 4095, 4588, 5080, 5250, 5535, 8190, 10850, 11070, 11284, 15240, 16380, 17520, 22140, 24180, 32760, 34125, 38745, 39060, 40880, 42000, 42720, 43216, 44280, 45720, 54243, 56420, 59644
Offset: 1

Views

Author

Amiram Eldar, Feb 21 2020

Keywords

Examples

			14 is a term since A317797(14) = 350 is divisible by 14.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10000], Divisible[Plus @@ (Abs[Divisors[#, GaussianIntegers -> True]]^2), #] &]

A355543 Numbers k such that the sum of the squares of the odd divisors of k (A050999) is divisible by k.

Original entry on oeis.org

1, 65, 130, 175, 260, 350, 525, 1050, 1105, 2100, 2210, 4420, 5425, 8840, 10850, 16275, 20737, 21700, 30225, 32045, 32550, 41474, 60450, 64090, 65100, 70525, 82948, 86025, 103685, 120900, 128180, 130200, 141050, 171275, 172050, 200725, 207370, 207553, 211575
Offset: 1

Views

Author

Amiram Eldar, Jul 06 2022

Keywords

Comments

If k is an odd term > 1 then 2*k is also in the sequence.

Examples

			65 is a term since A050999(65) = 4420 = 65 * 68 is divisible by 65.
		

Crossrefs

Cf. A050999.
Similar sequences: A007691, A046762.

Programs

  • Mathematica
    f[p_, e_] := If[p == 2, 1, (p^(2*e + 2) - 1)/(p^2 - 1)]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[10^5], Divisible[s[#], #] &]
  • PARI
    f(n) = sumdiv(n, d, if(d%2==1, d^2, 0 ) ); \\ A050999
    isok(k) = !(f(k) % k); \\ Michel Marcus, Jul 07 2022
Showing 1-10 of 10 results.