cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A002385 Palindromic primes: prime numbers whose decimal expansion is a palindrome.

Original entry on oeis.org

2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, 10301, 10501, 10601, 11311, 11411, 12421, 12721, 12821, 13331, 13831, 13931, 14341, 14741, 15451, 15551, 16061, 16361, 16561, 16661, 17471, 17971, 18181, 18481, 19391, 19891, 19991
Offset: 1

Views

Author

Keywords

Comments

Every palindrome with an even number of digits is divisible by 11, so 11 is the only member of the sequence with an even number of digits. - David Wasserman, Sep 09 2004
This holds in any number base A006093(n), n>1. - Lekraj Beedassy, Mar 07 2005 and Dec 06 2009
The log-log plot shows the fairly regular structure of these numbers. - T. D. Noe, Jul 09 2013
Conjecture: The only primes with palindromic prime indices that are palindromic primes themselves are 3, 5 and 11. Tested for the primes with the first 8000000 palindromic prime indices. - Ivan N. Ianakiev, Oct 10 2014
It follows from the above conjecture that 2 is the only k such that k, prime(k), prime(m) = k + prime(k) and m are all palindromic primes. - Ivan N. Ianakiev, Mar 17 2025
Banks, Hart, and Sakata derive a nontrivial upper bound for the number of prime palindromes n <= x as x -> oo. It follows that almost all palindromes are composite. The results hold in any base. The authors use Weil's bound for Kloosterman sums. - Jonathan Sondow, Jan 02 2018
Number of terms < 100^k, k >= 1: 5, 20, 113, 781, 5953, 47995, 401698, .... - Robert G. Wilson v, Jan 03 2018, corrected by M. F. Hasler, Dec 19 2024
Initially the above comment listed 4, 20, 113, ... which is the number of terms less than 10, 1000, 10^5, ..., i.e., up to 10^(2k-1), k >= 1. The number of terms < 10^k are the cumulative sums of A016115(n) (number of prime palindromes with n digits) up to n = k. - M. F. Hasler, Dec 19 2024

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 228.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 120-121.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A007500 = this sequence union A006567.
Subsequence of A188650; A188649(a(n)) = a(n); see A033620 for multiplicative closure. [Reinhard Zumkeller, Apr 11 2011]
Cf. A016041, A029732, A069469, A117697, A046942, A032350 (Palindromic nonprime numbers).
Cf. A016115 (number of prime palindromes with n digits).

Programs

  • GAP
    Filtered([1..20000],n->IsPrime(n) and ListOfDigits(n)=Reversed(ListOfDigits(n))); # Muniru A Asiru, Mar 08 2019
  • Haskell
    a002385 n = a002385_list !! (n-1)
    a002385_list = filter ((== 1) . a136522) a000040_list
    -- Reinhard Zumkeller, Apr 11 2011
    
  • Maple
    ff := proc(n) local i,j,k,s,aa,nn,bb,flag; s := n; aa := convert(s,string); nn := length(aa); bb := ``; for i from nn by -1 to 1 do bb := cat(bb,substring(aa,i..i)); od; flag := 0; for j from 1 to nn do if substring(aa,j..j)<>substring(bb,j..j) then flag := 1 fi; od; RETURN(flag); end; gg := proc(i) if ff(ithprime(i)) = 0 then RETURN(ithprime(i)) fi end;
    rev:=proc(n) local nn, nnn: nn:=convert(n,base,10): add(nn[nops(nn)+1-j]*10^(j-1),j=1..nops(nn)) end: a:=proc(n) if n=rev(n) and isprime(n)=true then n else fi end: seq(a(n),n=1..20000); # rev is a Maple program to revert a number - Emeric Deutsch, Mar 25 2007
    # A002385 Gets all base-10 palindromic primes with exactly d digits, in the list "Res"
    d:=7; # (say)
    if d=1 then Res:= [2,3,5,7]:
    elif d=2 then Res:= [11]:
    elif d::even then
        Res:=[]:
    else
        m:= (d-1)/2:
        Res2 := [seq(seq(n*10^(m+1)+y*10^m+digrev(n), y=0..9), n=10^(m-1)..10^m-1)]:
        Res:=[]: for x in Res2 do if isprime(x) then Res:=[op(Res),x]; fi: od:
    fi:
    Res; # N. J. A. Sloane, Oct 18 2015
  • Mathematica
    Select[ Prime[ Range[2100] ], IntegerDigits[#] == Reverse[ IntegerDigits[#] ] & ]
    lst = {}; e = 3; Do[p = n*10^(IntegerLength[n] - 1) + FromDigits@Rest@Reverse@IntegerDigits[n]; If[PrimeQ[p], AppendTo[lst, p]], {n, 10^e - 1}]; Insert[lst, 11, 5] (* Arkadiusz Wesolowski, May 04 2012 *)
    Join[{2,3,5,7,11},Flatten[Table[Select[Prime[Range[PrimePi[ 10^(2n)]+1, PrimePi[ 10^(2n+1)]]],# == IntegerReverse[#]&],{n,3}]]] (* The program uses the IntegerReverse function from Mathematica version 10 *) (* Harvey P. Dale, Apr 22 2016 *)
    genPal[n_Integer, base_Integer: 10] := Block[{id = IntegerDigits[n, base], insert = Join[{{}}, {# - 1} & /@ Range[base]]}, FromDigits[#, base] & /@ (Join[id, #, Reverse@id] & /@ insert)]; k = 1; lst = {2, 3, 5, 7}; While[k < 19, p = Select[genPal[k], PrimeQ];
    If[p != {}, AppendTo[lst, p]]; k++]; Flatten@ lst (* RGWv *)
    Select[ Prime[ Range[2100]], PalindromeQ] (* Jean-François Alcover, Feb 17 2018 *)
    NestList[NestWhile[NextPrime, #, ! PalindromeQ[#2] &, 2] &, 2, 41] (* Jan Mangaldan, Jul 01 2020 *)
  • PARI
    is(n)=n==eval(concat(Vecrev(Str(n))))&&isprime(n) \\ Charles R Greathouse IV, Nov 20 2012
    
  • PARI
    forprime(p=2,10^5, my(d=digits(p,10)); if(d==Vecrev(d),print1(p,", "))); \\ Joerg Arndt, Aug 17 2014
    
  • PARI
    A002385_row(n)=select(is_A002113, primes([10^(n-1),10^n])) \\ Terms with n digits. For larger n, better filter primes in palindromes. - M. F. Hasler, Dec 19 2024
    
  • Python
    from itertools import chain
    from sympy import isprime
    A002385 = sorted((n for n in chain((int(str(x)+str(x)[::-1]) for x in range(1,10**5)),(int(str(x)+str(x)[-2::-1]) for x in range(1,10**5))) if isprime(n))) # Chai Wah Wu, Aug 16 2014
    
  • Python
    from sympy import isprime
    A002385 = [*filter(isprime, (int(str(x) + str(x)[-2::-1]) for x in range(10**5)))]
    A002385.insert(4, 11)  # Yunhan Shi, Mar 03 2023
    
  • Python
    from sympy import isprime
    from itertools import count, islice, product
    def A002385gen(): # generator of palprimes
        yield from [2, 3, 5, 7, 11]
        for d in count(3, 2):
            for last in "1379":
                for p in product("0123456789", repeat=d//2-1):
                    left = "".join(p)
                    for mid in [[""], "0123456789"][d&1]:
                        t = int(last + left + mid + left[::-1] + last)
                        if isprime(t):
                            yield t
    print(list(islice(A002385gen(), 46))) # Michael S. Branicky, Apr 13 2025
    
  • Sage
    [n for n in (2..18181) if is_prime(n) and Word(n.digits()).is_palindrome()] # Peter Luschny, Sep 13 2018
    

Formula

Intersection of A000040 (primes) and A002113 (palindromes).
A010051(a(n)) * A136522(a(n)) = 1. [Reinhard Zumkeller, Apr 11 2011]
Complement of A032350 in A002113. - Jonathan Sondow, Jan 02 2018

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Oct 25 2000
Comment from A006093 moved here by Franklin T. Adams-Watters, Dec 03 2009

A103357 Numbers n such that n and pi(n) (A000720) are palindromic.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 262, 323, 393, 525, 535, 555, 666, 818, 878, 949, 2002, 3773, 5775, 6116, 13031, 19591, 39093, 41414, 47374, 59295, 63236, 81918, 94549, 95759, 252252, 394493, 594495, 662266, 674476, 686686, 698896, 764467
Offset: 1

Views

Author

Zak Seidov, Feb 02 2005

Keywords

Crossrefs

Corresponding palindromic pi(n) in A103358.

Programs

  • Mathematica
    NextPalindrome[n_] := Block[ {l = Floor[ Log[10, n] + 1], idn = IntegerDigits[n]}, If[ Union[ idn] == {9}, Return[n + 2], If[l < 2, Return[n + 1], If[ FromDigits[ Reverse[ Take[ idn, Ceiling[l/2]]]] FromDigits[ Take[ idn, -Ceiling[l/2]]], FromDigits[ Join[ Take[ idn, Ceiling[l/2]], Reverse[ Take[ idn, Floor[l/2]]] ]], idfhn = FromDigits[ Take[ idn, Ceiling[l/2]]] + 1; idp = FromDigits[ Join[ IntegerDigits[ idfhn], Drop[ Reverse[ IntegerDigits[ idfhn]], Mod[l, 2]]]] ]]]];
    p = 0; a = {}; Do[p = NextPalindrome[ p]; q = IntegerDigits[ PrimePi[ p]]; If[ Reverse[q] == q, Print[{p, FromDigits[q]}]; AppendTo[a, p]], {n, 10^4}]; a (* Robert G. Wilson v, Feb 03 2005 *)

Formula

a(n) = P_A103358(n).

Extensions

More terms from Robert G. Wilson v, Feb 03 2005

A046941 Palindromic primes whose indices n are also palindromes.

Original entry on oeis.org

2, 3, 5, 7, 11, 143787341, 11853735811, 126537757735621
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    NextPalindrome[n_] := Block[ {l = Floor[ Log[10, n] + 1], idn = IntegerDigits[n]}, If[ Union[ idn] == {9}, Return[n + 2], If[l < 2, Return[n + 1], If[ FromDigits[ Reverse[ Take[ idn, Ceiling[l/2]]]] FromDigits[ Take[ idn, -Ceiling[l/2]]], FromDigits[ Join[ Take[ idn, Ceiling[l/2]], Reverse[ Take[ idn, Floor[l/2]]] ]], idfhn = FromDigits[ Take[ idn, Ceiling[l/2]]] + 1; idp = FromDigits[ Join[ IntegerDigits[ idfhn], Drop[ Reverse[ IntegerDigits[ idfhn]], Mod[l, 2]]]] ]]]];
    p = 0; Do[p = NextPalindrome[p]; While[ !PrimeQ[p], p = NextPalindrome[ p]]; q = IntegerDigits[ PrimePi[ p]]; If[Reverse[q] == q, Print[{p, FromDigits[q]}]], {n, 10^4}] (* Robert G. Wilson v, Feb 03 2005 *)
    palQ[n_] := Reverse[x = IntegerDigits[n]] == x; t = {}; Do[p = Prime[i]; If[palQ[i] && palQ[p], AppendTo[t, p]], {i, 9*10^6}]; t (* Jayanta Basu, Jun 23 2013 *)
  • PARI
    ispal(n) = my(d=digits(n)); d == Vecrev(d);
    isok(p) = isprime(p) && ispal(p) && ispal(primepi(p)); \\ Michel Marcus, Jan 27 2019

Formula

a(n) = prime(A046942(n)).

Extensions

a(7) from Giovanni Resta, May 14 2003
a(8) from Giovanni Resta, Aug 10 2019

A103358 Palindromes q derived from palindromes p such that pi(p) = q.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 4, 4, 4, 5, 8, 11, 55, 66, 77, 99, 99, 101, 121, 141, 151, 161, 303, 525, 757, 797, 1551, 2222, 4114, 4334, 4884, 5995, 6336, 8008, 9119, 9229, 22222, 33433, 48684, 53735, 54645, 55555, 56465, 61316, 64046, 72027, 72727, 84548, 89998
Offset: 1

Views

Author

Zak Seidov, Feb 02 2005

Keywords

Crossrefs

Programs

  • Mathematica
    NextPalindrome[n_] := Block[ {l = Floor[ Log[10, n] + 1], idn = IntegerDigits[n]}, If[ Union[ idn] == {9}, Return[n + 2], If[l < 2, Return[n + 1], If[ FromDigits[ Reverse[ Take[ idn, Ceiling[l/2]]]] FromDigits[ Take[ idn, -Ceiling[l/2]]], FromDigits[ Join[ Take[ idn, Ceiling[l/2]], Reverse[ Take[ idn, Floor[l/2]]] ]], idfhn = FromDigits[ Take[ idn, Ceiling[l/2]]] + 1; idp = FromDigits[ Join[ IntegerDigits[ idfhn], Drop[ Reverse[ IntegerDigits[ idfhn]], Mod[l, 2]]]] ]]]];
    p = 0; a = {}; Do[p = NextPalindrome[ p]; q = IntegerDigits[ PrimePi[ p]]; If[ Reverse[q] == q, Print[{p, FromDigits[q]}]; AppendTo[a, p]], {n, 10^4}]; PrimePi[a] (* Robert G. Wilson v, Feb 03 2005 *)

Extensions

More terms from Robert G. Wilson v, Feb 03 2005

A103402 Palindromes p such that pi(p) is a palindromic prime.

Original entry on oeis.org

3, 4, 5, 6, 11, 33, 555, 878, 5775, 6116, 919919, 58633685, 129707921, 16958285961, 867275572768, 50166722766105, 310439747934013, 4384495885944834, 5817988338897185
Offset: 1

Views

Author

Robert G. Wilson v, Feb 03 2005

Keywords

Comments

From a suggestion from Zak Seidov, Feb 02 2005.
a(16) > 32*10^12. - Donovan Johnson, Dec 03 2009

Crossrefs

Programs

  • Mathematica
    NextPalindrome[n_] := Block[ {l = Floor[ Log[10, n] + 1], idn = IntegerDigits[n]}, If[ Union[ idn] == {9}, Return[n + 2], If[l < 2, Return[n + 1], If[ FromDigits[ Reverse[ Take[ idn, Ceiling[l/2]]]] FromDigits[ Take[ idn, -Ceiling[l/2]]], FromDigits[ Join[ Take[ idn, Ceiling[l/2]], Reverse[ Take[ idn, Floor[l/2]]] ]], idfhn = FromDigits[ Take[ idn, Ceiling[l/2]]] + 1; idp = FromDigits[ Join[ IntegerDigits[ idfhn], Drop[ Reverse[ IntegerDigits[ idfhn]], Mod[l, 2]]]] ]]]];
    p = 0; a = {}; Do[p = NextPalindrome[p]; q = PrimePi[p]; If[PrimeQ[q], r = IntegerDigits[q]; If[Reverse[r] == r, Print[{p, q}]; AppendTo[a, p]]], {n, 10^6}]; a
    palQ[n_] := Reverse[x = IntegerDigits[n]] == x; t = {}; Do[If[palQ[n] && PrimeQ[x = PrimePi[n]] && palQ[x], AppendTo[t, n]], {n,10^6}]; t (* Jayanta Basu, Jun 24 2013 *)

Extensions

a(15) from Donovan Johnson, Dec 03 2009
a(16)-a(17) from Chai Wah Wu, Sep 04 2019
a(18)-a(19) from Giovanni Resta, Sep 12 2019

A103403 Palindromic primes q derived from palindromes p such that pi(p) = q.

Original entry on oeis.org

2, 2, 3, 3, 5, 11, 101, 151, 757, 797, 72727, 3485843, 7362637, 753535357, 32792329723, 1644209024461, 9600458540069, 125319848913521, 164957666759461
Offset: 1

Views

Author

Robert G. Wilson v, Feb 03 2005

Keywords

Comments

From a suggestion from Zak Seidov, Feb 02 2005.
a(16) > pi(32*10^12). - Donovan Johnson, Dec 03 2009

Crossrefs

Programs

  • Mathematica
    NextPalindrome[n_] := Block[ {l = Floor[ Log[10, n] + 1], idn = IntegerDigits[n]}, If[ Union[ idn] == {9}, Return[n + 2], If[l < 2, Return[n + 1], If[ FromDigits[ Reverse[ Take[ idn, Ceiling[l/2]]]] FromDigits[ Take[ idn, -Ceiling[l/2]]], FromDigits[ Join[ Take[ idn, Ceiling[l/2]], Reverse[ Take[ idn, Floor[l/2]]] ]], idfhn = FromDigits[ Take[ idn, Ceiling[l/2]]] + 1; idp = FromDigits[ Join[ IntegerDigits[ idfhn], Drop[ Reverse[ IntegerDigits[ idfhn]], Mod[l, 2]]]] ]]]];
    p = 0; a = {}; Do[p = NextPalindrome[p]; q = PrimePi[p]; If[PrimeQ[q], r = IntegerDigits[q]; If[Reverse[r] == r, Print[{p, q}]; AppendTo[a, q]]], {n, 10^6}]; a
    palQ[n_] := Reverse[x = IntegerDigits[n]] == x; t = {}; Do[If[palQ[n] && PrimeQ[y = PrimePi[n]] && palQ[y], AppendTo[t, y]], {n,10^6}]; t (* Jayanta Basu, Jun 24 2013 *)

Extensions

a(15) from Donovan Johnson, Dec 03 2009
a(16)-a(17) from Chai Wah Wu, Sep 04 2019
a(18)-a(19) from Giovanni Resta, Sep 12 2019

A069469 Numbers k such that prime(reversal(k)) = reversal(prime(k)). Ignore leading 0's.

Original entry on oeis.org

1, 2, 3, 4, 5, 12, 21, 8114118, 535252535
Offset: 1

Views

Author

Joseph L. Pe, Apr 15 2002

Keywords

Comments

For an arithmetical function f, call the arguments n such that f(reverse(n)) = reverse(f(n)) the "palinpoints" of f. This sequence is the sequence of palinpoints of f(n) = prime(n).
These are all the palinpoints of prime(n) not exceeding 10^7. There are more (535252535 is known to be a term, but it is not known whether it is the next one).
Contains all n such that n and prime(n) are both palindromes, i.e. A046942. Heuristically, we would expect there to be infinitely many of these, but they will be rare: the number of them with at most d digits may be on the order of sqrt(d). - Robert Israel, May 30 2016
a(10) > 10^9. - Giovanni Resta, Apr 13 2017

Examples

			Let f(n) = prime(n). Then f(21) = 73, f(12) = 37, so f(reverse(21)) = reverse(f(21)). Therefore 21 belongs to the sequence.
		

Crossrefs

Programs

  • Mathematica
    rev[n_] := FromDigits[Reverse[IntegerDigits[n]]]; f[n_] := Prime[n]; Select[Range[10^5], f[rev[ # ]] == rev[f[ # ]] &]

Extensions

a(8) added by Ivan Neretin, May 30 2016
a(9) from Giovanni Resta, Apr 13 2017
Showing 1-7 of 7 results.