cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A047270 Numbers that are congruent to {3, 5} mod 6.

Original entry on oeis.org

3, 5, 9, 11, 15, 17, 21, 23, 27, 29, 33, 35, 39, 41, 45, 47, 51, 53, 57, 59, 63, 65, 69, 71, 75, 77, 81, 83, 87, 89, 93, 95, 99, 101, 105, 107, 111, 113, 117, 119, 123, 125, 129, 131, 135, 137, 141, 143, 147, 149
Offset: 1

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0( 10 ).
This sequence is an interleaving of A016945 with A016969. - Guenther Schrack, Nov 16 2018

Crossrefs

Cf. A047235 [(6*n-(-1)^n-3)/2], A047241 [(6*n-(-1)^n-5)/2], A047238 [(6*n-(-1)^n-7)/2]. [Bruno Berselli, Jun 24 2010]
Subsequence of A186422.
From Guenther Schrack, Nov 18 2018: (Start)
Complement: A047237.
First differences: A105397(n) for n > 0.
Partial sums: A227017(n+1) for n > 0.
Elements of odd index: A016945.
Elements of even index: A016969(n-1) for n > 0. (End)

Programs

  • Mathematica
    Select[Range@ 149, MemberQ[{3, 5}, Mod[#, 6]] &] (* or *)
    Array[(6 # - (-1)^# - 1)/2 &, 50] (* or *)
    Fold[Append[#1, 6 #2 - Last@ #1 - 4] &, {3}, Range[2, 50]] (* or *)
    CoefficientList[Series[(3 + 2 x + x^2)/((1 + x) (1 - x)^2), {x, 0, 49}], x] (* Michael De Vlieger, Jan 12 2018 *)
  • PARI
    a(n) = (6*n - 1 - (-1)^n)/2 \\ David Lovler, Aug 25 2022

Formula

a(n) = sqrt(2)*sqrt((1-6*n)*(-1)^n + 18*n^2 - 6*n + 1)/2. - Paul Barry, May 11 2003
From Bruno Berselli, Jun 24 2010: (Start)
G.f.: (3+2*x+x^2)/((1+x)*(1-x)^2).
a(n) - a(n-1) - a(n-2) + a(n-3) = 0, with n > 3.
a(n) = (6*n - (-1)^n - 1)/2. (End)
a(n) = 6*n - a(n-1) - 4 with n > 1, a(1)=3. - Vincenzo Librandi, Aug 05 2010
From Guenther Schrack, Nov 17 2018: (Start)
a(n) = a(n-2) + 6 for n > 2.
a(-n) = -A047241(n+1) for n > 0.
a(n) = A109613(n-1) + 2*n for n > 0.
a(n) = 2*A001651(n) + 1.
m-element moving averages: Sum_{k=1..m} a(n-m+k)/m = A016777(n-m/2) for m = 2, 4, 6, ... and n >= m. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(4*sqrt(3)) - log(3)/4. - Amiram Eldar, Dec 13 2021
E.g.f.: 1 + 3*x*exp(x) - cosh(x). - David Lovler, Aug 25 2022

A047255 Numbers that are congruent to {1, 2, 3, 5} mod 6.

Original entry on oeis.org

1, 2, 3, 5, 7, 8, 9, 11, 13, 14, 15, 17, 19, 20, 21, 23, 25, 26, 27, 29, 31, 32, 33, 35, 37, 38, 39, 41, 43, 44, 45, 47, 49, 50, 51, 53, 55, 56, 57, 59, 61, 62, 63, 65, 67, 68, 69, 71, 73, 74, 75, 77, 79, 80, 81, 83, 85, 86, 87, 89, 91, 92, 93, 95, 97, 98, 99, 101, 103, 104
Offset: 1

Views

Author

Keywords

Comments

Each element is coprime to preceding two elements. - Amarnath Murthy, Jun 12 2001
The sequence is the interleaving of A047241 with A016789. - Guenther Schrack, Feb 16 2019

Examples

			After 21 and 23 the next term is 25 as 24 has a common divisor with 21.
		

Crossrefs

Programs

  • Haskell
    a047255 n = a047255_list !! (n-1)
    a047255_list = 1 : 2 : 3 : 5 : map (+ 6) a047255_list
    -- Reinhard Zumkeller, Jan 17 2014
    
  • Magma
    [n : n in [0..100] | n mod 6 in [1, 2, 3, 5]]; // Wesley Ivan Hurt, May 21 2016
    
  • Maple
    A047255:=n->(6*n-4+I^(1-n)+I^(n-1))/4: seq(A047255(n), n=1..100); # Wesley Ivan Hurt, May 20 2016
  • Mathematica
    Select[Range[100], MemberQ[{1, 2, 3, 5}, Mod[#, 6]] &]
    LinearRecurrence[{2,-2,2,-1},{1,2,3,5},100] (* Harvey P. Dale, May 14 2020 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,2,-2,2]^(n-1)*[1;2;3;5])[1,1] \\ Charles R Greathouse IV, Feb 11 2017
    
  • Sage
    a=(x*(1+x^2+x^3)/((1+x^2)*(1-x)^2)).series(x, 80).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Feb 16 2019

Formula

{k | k == 1, 2, 3, 5 (mod 6)}.
G.f.: x*(1 + x^2 + x^3) / ((1+x^2)*(1-x)^2). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, May 20 2016: (Start)
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4), for n>4.
a(n) = (6*n - 4 + i^(1-n) + i^(n-1))/4, where i = sqrt(-1).
a(2*n) = A016789(n-1) for n>0, a(2*n-1) = A047241(n). (End)
E.g.f.: (2 + sin(x) + (3*x - 2)*exp(x))/2. - Ilya Gutkovskiy, May 21 2016
a(1-n) = - A047251(n). - Wesley Ivan Hurt, May 21 2016
From Guenther Schrack, Feb 16 2019: (Start)
a(n) = (6*n - 4 + (1 - (-1)^n)*(-1)^(n*(n-1)/2))/4.
a(n) = a(n-4) + 6, a(1)=1, a(2)=2, a(3)=3, a(4)=5, for n > 4.
a(n) = A047237(n) + 1. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = 5*sqrt(3)*Pi/36 + log(2)/3 - log(3)/4. - Amiram Eldar, Dec 17 2021
a(n) = 2*n - 1 - floor(n/2) + floor(n/4) - floor((n+1)/4). - Ridouane Oudra, Feb 21 2023

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jun 15 2001

A102214 Expansion of (1 + 4*x + 4*x^2)/((1+x)*(1-x)^3).

Original entry on oeis.org

1, 6, 16, 30, 49, 72, 100, 132, 169, 210, 256, 306, 361, 420, 484, 552, 625, 702, 784, 870, 961, 1056, 1156, 1260, 1369, 1482, 1600, 1722, 1849, 1980, 2116, 2256, 2401, 2550, 2704, 2862, 3025, 3192, 3364, 3540, 3721, 3906, 4096, 4290, 4489, 4692, 4900
Offset: 0

Views

Author

Creighton Dement, Feb 17 2005

Keywords

Comments

A floretion-generated sequence.
a(n) gives the number of triples (x,y,x+y) with positive integers satisfying x < y and x + y <= 3*n. - Marcus Schmidt (marcus-schmidt(AT)gmx.net), Jan 13 2006
Number of different partitions of numbers x + y = z such that {x,y,z} are integers {1,2,3,...,3n} and z > y > x. - Artur Jasinski, Feb 09 2010
Second bisection preceded by zero is A152743. - Bruno Berselli, Oct 25 2011
a(n) has no final digit 3, 7, 8. - Paul Curtz, Mar 04 2020
One odd followed by three evens.
From Paul Curtz, Mar 06 2020: (Start)
b(n) = 0, 1, 6, 16, 30, 49, ... = 0, a(n).
( 25, 12, 4, 0, 1, 6, 16, 30, ...
-13, -8, -4 1, 5, 10, 14, 19, ...
5, 4, 5, 4, 5, 4, 5, 4, ... .)
b(-n) = 0, 4, 12, 25, 42, 64, 90, 121, ... .
A154589(n) are in the main diagonal of b(n) and b(-n). (End)

Crossrefs

Programs

  • Magma
    [(6*n*(3*n+4)+(-1)^n+7)/8: n in [0..60]]; // Vincenzo Librandi, Oct 26 2011
    
  • Mathematica
    aa = {}; Do[i = 0; Do[Do[Do[If[x + y == z, i = i + 1], {x, y + 1, 3 n}], {y, 1, 3 n}], {z, 1, 3 n}]; AppendTo[aa, i], {n, 1, 20}]; aa (* Artur Jasinski, Feb 09 2010 *)
  • PARI
    a(n)=(6*n*(3*n+4)+(-1)^n+7)/8 \\ Charles R Greathouse IV, Apr 16 2020

Formula

G.f.: -(4*x^2 + 4*x + 1)/((x+1)*(x-1)^3) = (1+2*x)^2/((1+x)*(1-x)^3).
a(2n) = A016778(n) = (3n+1)^2.
a(n) + a(n+1) = A038764(n+1).
a(n) = floor( (3*n+2)/2 ) * ceiling( (3*n+2)/2 ). - Marcus Schmidt (marcus-schmidt(AT)gmx.net), Jan 13 2006
a(n) = (6*n*(3*n+4) + (-1)^n+7)/8. - Bruno Berselli, Oct 25 2011
a(n) = A198392(n) + A198392(n-1). - Bruno Berselli, Nov 06 2011
From Paul Curtz, Mar 04 2020: (Start)
a(n) = A006578(n) + A001859(n) + A077043(n+1).
a(n) = A274221(2+2*n).
a(20+n) - a(n) = 30*(32+3*n).
a(1+2*n) = 3*(1+n)*(2+3*n).
a(n) = A047237(n) * A047251(n).
a(n) = A001651(n+1) * A032766(n).(End)
E.g.f.: ((4 + 21*x + 9*x^2)*cosh(x) + 3*(1 + 7*x + 3*x^2)*sinh(x))/4. - Stefano Spezia, Mar 04 2020

Extensions

Definition rewritten by Bruno Berselli, Oct 25 2011

A047262 Numbers that are congruent to {0, 2, 4, 5} mod 6.

Original entry on oeis.org

0, 2, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 20, 22, 23, 24, 26, 28, 29, 30, 32, 34, 35, 36, 38, 40, 41, 42, 44, 46, 47, 48, 50, 52, 53, 54, 56, 58, 59, 60, 62, 64, 65, 66, 68, 70, 71, 72, 74, 76, 77, 78, 80, 82, 83, 84, 86, 88, 89, 90, 92, 94, 95, 96, 98
Offset: 1

Views

Author

Keywords

Comments

The sequence is the interleaving of A047233 with A016789(n-1). - Guenther Schrack, Feb 14 2019

Crossrefs

Complement: A047241.

Programs

  • Magma
    [n : n in [0..100] | n mod 6 in [0, 2, 4, 5]]; // Wesley Ivan Hurt, May 21 2016
    
  • Maple
    A047262:=n->(6*n-4-I^(1-n)+I^(1+n))/4: seq(A047262(n), n=1..100); # Wesley Ivan Hurt, May 21 2016
  • Mathematica
    Select[Range[0,100], MemberQ[{0,2,4,5}, Mod[#,6]]&] (* or *) LinearRecurrence[{2,-2,2,-1}, {0,2,4,5}, 70] (* Harvey P. Dale, Dec 09 2015 *)
  • PARI
    my(x='x+O('x^70)); concat([0], Vec(x^2*(2+x^2)/((1+x^2)*(1-x)^2))) \\ G. C. Greubel, Feb 16 2019
    
  • Sage
    a=(x^2*(2+x^2)/((1+x^2)*(1-x)^2)).series(x, 72).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Feb 16 2019

Formula

From R. J. Mathar, Oct 08 2011: (Start)
G.f.: x^2*(2+x^2) / ( (1+x^2)*(1-x)^2 ).
a(n) = 3*n/2 - 1 - sin(Pi*n/2)/2. (End)
From Wesley Ivan Hurt, May 21 2016: (Start)
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4) for n > 4.
a(n) = (6*n - 4 - i^(1-n) + i^(1+n))/4, where i = sqrt(-1).
a(2*n) = A016789(n-1) for n>0, a(2*n-1) = A047233(n).
a(2-n) = - A047237(n), a(n-1) = A047273(n) - 1 for n > 1. (End)
From Guenther Schrack, Feb 14 2019: (Start)
a(n) = (6*n - 4 - (1 - (-1)^n)*(-1)^(n*(n-1)/2))/4.
a(n) = a(n-4) + 6, a(1)=0, a(2)=2, a(3)=4, a(4)=5, for n > 4. (End)
Sum_{n>=2} (-1)^n/a(n) = log(3)/4 + log(2)/3 - sqrt(3)*Pi/36. - Amiram Eldar, Dec 17 2021

Extensions

More terms from Wesley Ivan Hurt, May 21 2016

A118286 Numbers n such that n == 0 (mod 4) or n == 2 (mod 12).

Original entry on oeis.org

2, 4, 8, 12, 14, 16, 20, 24, 26, 28, 32, 36, 38, 40, 44, 48, 50, 52, 56, 60, 62, 64, 68, 72, 74, 76, 80, 84, 86, 88, 92, 96, 98, 100, 104, 108, 110, 112, 116, 120, 122, 124, 128, 132, 134, 136, 140, 144, 146, 148, 152, 156, 158, 160, 164, 168, 170, 172, 176, 180, 182
Offset: 1

Views

Author

T. D. Noe, Apr 23 2006

Keywords

Comments

Except for n=2, conjectured n such that A118278(n)=-1 and A118282(n)=-1; n such that there is an infinite set of numbers not representable as the sum of three n-gonal numbers or three generalized n-gonal numbers.
The difference between two consecutive terms follow the 4-period: (2, 4, 4, 2). - Bernard Schott, Feb 25 2019

Crossrefs

Programs

  • GAP
    Filtered([1..190],n->n mod 4=0 or n mod 12=2); # Muniru A Asiru, Feb 22 2019
  • Magma
    [Round((3*n-1) + (Sqrt(-1))^n*(1+(-1)^n)/2): n in [1..70]]; // G. C. Greubel, Feb 21 2019
    
  • Maple
    select(n->modp(n,4)=0 or modp(n,12)=2,[$1..190]); # Muniru A Asiru, Feb 22 2019
  • Mathematica
    Union[4*Range[50], 2+12*Range[16]]
  • PARI
    a(n) = (-2+(-I)^n+I^n+6*n)/2 \\ Colin Barker, Oct 19 2015
    
  • PARI
    Vec(2*x*(1+2*x^2)/((1+x^2)*(1-x)^2) + O(x^70)) \\ Colin Barker, Oct 19 2015
    
  • PARI
    for(n=1, 1e3, if(n%4 == 0 || n%12 == 2, print1(n", "))) \\ Altug Alkan, Oct 19 2015
    
  • Sage
    [(3*n-1) + I^n*(1+(-1)^n)/2 for n in (1..70)] # G. C. Greubel, Feb 21 2019
    

Formula

G.f.: 2*x*(1+2*x^2) / ( (1+x^2)*(1-x)^2 ). - R. J. Mathar, Dec 02 2011
a(n) = 2*A047237(n+1) = 3*n - 1 + cos(n*Pi/2). - R. J. Mathar, Dec 02 2011
a(n) = (-2 + (-i)^n + i^n + 6*n)/2, where i = sqrt(-1). - Colin Barker, Oct 19 2015
a(n) = (6*n - 2 + (1 + (-1)^n)*(-1)^(n*(n-1)/2))/2. - Guenther Schrack, Feb 21 2019
E.g.f.: cos(x) + (3*x-1)*exp(x). - G. C. Greubel, Feb 21 2019
Showing 1-5 of 5 results.