cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A049492 Primes p such that p+4 and p+16 are also primes.

Original entry on oeis.org

3, 7, 13, 37, 43, 67, 97, 163, 223, 277, 463, 487, 643, 757, 823, 937, 967, 1087, 1093, 1213, 1303, 1423, 1483, 1567, 1597, 1693, 1873, 2083, 2137, 2293, 2377, 2617, 2683, 2953, 3187, 3343, 3847, 3907, 4003, 4447, 4783, 5503, 5653, 5923, 6547, 6967, 6997
Offset: 1

Views

Author

Keywords

Comments

All terms > 3 are == 1 (mod 6). - Zak Seidov, Sep 05 2014
Intersection of A023200 and A049488. - Michel Marcus, Sep 05 2014

Examples

			3, 3+4 = 7, 3+16 = 19 are all primes.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[900]],And@@PrimeQ[#+{4,16}]&] (* Harvey P. Dale, Jan 17 2011 *)
  • PARI
    lista(nn) = forprime (n=1, nn, if (isprime(n+4) && isprime(n+16), print1(n, ", "))); \\ Michel Marcus, Sep 05 2014

A153418 Primes p such that p+18 is also prime.

Original entry on oeis.org

5, 11, 13, 19, 23, 29, 41, 43, 53, 61, 71, 79, 83, 89, 109, 113, 131, 139, 149, 163, 173, 179, 181, 193, 211, 223, 233, 239, 251, 263, 293, 313, 331, 349, 379, 383, 401, 421, 431, 439, 443, 449, 461, 491, 503, 523, 569, 599, 601, 613, 641, 643, 659, 673, 683
Offset: 1

Views

Author

Keywords

Comments

Both p and p+18 have the same digital root (A010888). - Zak Seidov, Sep 14 2015
No term belongs to A030432. - Michel Marcus, Sep 14 2015
No term belongs to A045437. - Bruno Berselli, Sep 14 2015

Examples

			5 is in sequence because 5+18=23 is also prime;
11 is in sequence because 11+18=29 is also prime.
		

Crossrefs

A031936 is a subsequence. - Zak Seidov, Sep 13 2015

Programs

  • Magma
    [p: p in PrimesUpTo(1000) | IsPrime(p+18)]; // Vincenzo Librandi, Apr 14 2013
    
  • Mathematica
    lst={};d=18;Do[p=Prime[n];If[PrimeQ[p+d],AppendTo[lst,p]],{n,6!}];lst
    Select[Prime[Range[150]], PrimeQ[(# + 18)]&] (* Vincenzo Librandi, Apr 14 2013 *)
  • PARI
    list(n)=forprime(p=1,n,if(isprime(p+18),print1(p", ")))  \\ Anders Hellström, Sep 13 2015
    
  • Sage
    [p for p in primes(700) if is_prime(p+18)]; # Bruno Berselli, Sep 14 2015

Extensions

Definition improved by Bruno Berselli, Oct 31 2012

A031934 Lower prime of a pair of consecutive primes having a difference of 16.

Original entry on oeis.org

1831, 1933, 2113, 2221, 2251, 2593, 2803, 3121, 3373, 3391, 3433, 3643, 4057, 4111, 4567, 4621, 5023, 5281, 5623, 5881, 6637, 6763, 6841, 6883, 7333, 7417, 7993, 8581, 8647, 9013, 9241, 9661, 9907, 10273, 10513, 10867, 10957, 11197
Offset: 1

Views

Author

Keywords

Comments

Conjecture: The sequence is infinite and for every n, a(n+1) < a(n)^(1+1/n); i.e., a(n)^(1/n) is a strictly decreasing function of n (see comment lines of the sequence A248855). - Jahangeer Kholdi and Farideh Firoozbakht, Nov 29 2014
All terms are == 1 mod 6. - Zak Seidov, Mar 27 2015
n such that A000720(n) = A000720(n-1)+1 = A000720(n+15) = A000720(n+16)-1. - Robert Israel, Mar 27 2015

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(12000) | NextPrime(p)-p eq 16]; // Bruno Berselli, Apr 09 2013
    
  • Maple
    P:= select(isprime,[seq(2*i+1,i=1..10000)]):
    P[select(t -> P[t+1]-P[t]=16, [$1..nops(P)-1])]; # Robert Israel, Mar 27 2015
  • Mathematica
    Transpose[Select[Partition[Prime[Range[1500]], 2, 1], Last[#] - First[#] == 16 &]][[1]] (* Bruno Berselli, Apr 09 2013 *)
  • PARI
    is(n)=isprime(n) && nextprime(n+1)==n+16 \\ Charles R Greathouse IV, Sep 14 2015

Formula

a(n) = prime(A320706(n)). - R. J. Mathar, Apr 30 2024

A049489 Primes p such that p + 32 is also prime.

Original entry on oeis.org

5, 11, 29, 41, 47, 71, 107, 131, 149, 167, 179, 191, 197, 239, 251, 281, 317, 347, 389, 401, 431, 467, 491, 509, 569, 587, 599, 641, 659, 677, 701, 719, 797, 821, 827, 887, 977, 1019, 1031, 1061, 1091, 1097, 1181, 1217, 1259, 1289, 1367, 1427, 1439, 1451
Offset: 1

Views

Author

Keywords

Examples

			29 and 29 + 32 = 61 are both prime.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(2000) | IsPrime(p+32)]; // Vincenzo Librandi, Apr 22 2015
  • Maple
    Primes:= select(isprime,{seq(i,i=3..10000,2)}):
    sort(convert(Primes intersect map(`-`,Primes,32),list)); # Robert Israel, Dec 20 2015
  • Mathematica
    Select[Range[2000], PrimeQ[#] && PrimeQ[# + 32] &] (* Vincenzo Librandi, Apr 22 2015 *)
    Select[Prime[Range[300]],PrimeQ[#+32]&] (* Harvey P. Dale, Oct 14 2017 *)
  • PARI
    isok(n) = isprime(n) && isprime(n+32); \\ Michel Marcus, Dec 31 2013
    

Extensions

Name improved by Bruno Berselli, Apr 22 2015

A156104 Primes p such that p+36 is also prime.

Original entry on oeis.org

5, 7, 11, 17, 23, 31, 37, 43, 47, 53, 61, 67, 71, 73, 101, 103, 113, 127, 131, 137, 157, 163, 191, 193, 197, 227, 233, 241, 257, 271, 277, 281, 311, 313, 317, 331, 337, 347, 353, 373, 383, 397, 421, 431, 443, 463, 467, 487, 521, 541, 557, 563, 571, 577, 607
Offset: 1

Views

Author

Vincenzo Librandi, Feb 08 2009

Keywords

Crossrefs

Cf. A156112.
Cf. sequences of the type p+n are primes: A001359 (n=2), A023200 (n=4), A023201 (n=6), A023202 (n=8), A023203 (n=10), A046133 (n=12), A153417 (n=14), A049488 (n=16), A153418 (n=18), A153419 (n=20), A242476 (n=22), A033560 (n=24), A252089 (n=26), A252090 (n=28), A049481 (n=30), A049489 (n=32), A252091 (n=34), this sequence (n=36); A062284 (n=50), A049490 (n=64), A156105 (n=72), A156107 (n=144).

Programs

  • Magma
    [p: p in PrimesUpTo(1000) | IsPrime(p + 36)]; // Vincenzo Librandi, Oct 31 2012
  • Mathematica
    Select[Prime[Range[1000]], PrimeQ[(#+ 36)]&] (* Vincenzo Librandi, Oct 31 2012 *)

A153419 Primes p such that p+20 is also prime.

Original entry on oeis.org

3, 11, 17, 23, 41, 47, 53, 59, 83, 89, 107, 131, 137, 173, 179, 191, 251, 257, 263, 293, 311, 317, 347, 353, 359, 389, 401, 419, 443, 467, 479, 503, 521, 557, 587, 593, 599, 641, 653, 719, 809, 839, 857, 863, 887, 947, 971, 977, 1013, 1019, 1031, 1049, 1097
Offset: 1

Views

Author

Keywords

Examples

			3 is in the sequence because 3+20=23 is prime; 11 is in the sequence because 11+20=31 is prime.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(1100) | IsPrime(p + 20)]; // Vincenzo Librandi, Apr 14 2013
  • Maple
    for a from 1 to 140 do if isprime(a) and isprime(a+20) then print(a)
      end if;  end do; # Matt C. Anderson, Jun 20 2022
  • Mathematica
    Select[Prime[Range[200]], PrimeQ[(# + 20)]&] (* Vincenzo Librandi, Apr 14 2013 *)

Extensions

Definition improved from Bruno Berselli, Oct 31 2012

A269257 Primes p such that p+2^4, p+2^6 and p+2^8 are all primes.

Original entry on oeis.org

7, 37, 163, 337, 757, 967, 1033, 1303, 2293, 2377, 2647, 2713, 3607, 5023, 6763, 7417, 8677, 8803, 9157, 9277, 10273, 14683, 14827, 15313, 15667, 16417, 20113, 21163, 21757, 22093, 24907, 27043, 27763, 29803, 29863, 32173, 34897, 36793, 36997, 37783, 38287, 38977, 39607
Offset: 1

Views

Author

Keywords

Examples

			The prime 7 is in the sequence because 7+16 = 23, 7+64 = 71 and 7+256 = 263 are all primes.
The prime 37 is in the sequence because 37+16 = 53, 37+64 = 101 and 37+256 = 293 are all primes.
		

Crossrefs

Subsequence of A002476, A049488, and A049490.

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[# + 2^4] && PrimeQ[# + 2^6] && PrimeQ[# + 2^8]&] (* Jean-François Alcover, Jul 12 2016 *)
    With[{c=2^Range[4,8,2]},Select[Prime[Range[4200]],AllTrue[#+c,PrimeQ]&]] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, May 21 2017 *)
  • PARI
    is(n)=n%6==1 && isprime(n+16) && isprime(n+64) && isprime(n+256) && isprime(n) \\ Charles R Greathouse IV, Jul 12 2016
    
  • Perl
    use ntheory ":all"; say for sieve_prime_cluster(2,1e6, 16,64,256); # Dana Jacobsen, Jul 13 2016

Formula

A049488 INTERSECT A049490 INTERSECT A361483. - R. J. Mathar, Mar 26 2024

A252089 Primes p such that p + 26 is prime.

Original entry on oeis.org

3, 5, 11, 17, 41, 47, 53, 71, 83, 101, 113, 131, 137, 167, 173, 197, 251, 257, 281, 311, 347, 353, 383, 431, 461, 521, 587, 593, 617, 647, 683, 701, 743, 761, 797, 827, 857, 881, 911, 941, 971, 983, 1013, 1061, 1091, 1097, 1103, 1187, 1223, 1277, 1301, 1373
Offset: 1

Views

Author

Vincenzo Librandi, Dec 14 2014

Keywords

Examples

			17 is in this sequence because 17+26 = 43 is prime.
431 is in this sequence because 431+26 = 457 is prime.
		

Crossrefs

Cf. sequences of the type p+n are primes: A001359 (n=2), A023200 (n=4), A023201 (n=6), A023202 (n=8), A023203 (n=10), A046133 (n=12), A153417 (n=14), A049488 (n=16), A153418 (n=18), A153419 (n=20), A242476 (n=22), A033560 (n=24), this sequence (n=26), A252090 (n=28), A049481 (n=30), A049489 (n=32), A252091 (n=34), A156104 (n=36); A062284 (n=50), A049490 (n=64), A156105 (n=72), A156107 (n=144).

Programs

  • Magma
    [NthPrime(n): n in [1..250] | IsPrime(NthPrime(n)+26)];
  • Mathematica
    Select[Prime[Range[200]], PrimeQ[# + 26] &]

A361485 Primes p such that p + 1024 is also prime.

Original entry on oeis.org

7, 37, 67, 73, 79, 127, 139, 157, 163, 193, 199, 277, 283, 337, 349, 409, 457, 463, 487, 499, 547, 577, 613, 643, 673, 709, 787, 823, 853, 877, 883, 907, 1039, 1063, 1087, 1117, 1129, 1213, 1249, 1327, 1399, 1423, 1453, 1567, 1597, 1609, 1663, 1669, 1753, 1777, 1873, 1879
Offset: 1

Views

Author

Elmo R. Oliveira, Mar 13 2023

Keywords

Comments

All terms are == 1 (mod 6).

Examples

			139 and 139 + 1024 = 1163 are both prime.
		

Crossrefs

Cf. A000040.
Cf. sequences of the type p + k are primes: A001359 (k = 2), A023200 (k = 4), A023202 (k = 8), A049488 (k = 16), A049489 (k = 32), A049490 (k = 64), A049491 (k = 128), A361483 (k = 256), A361484 (k = 512), this sequence (k = 1024).

Programs

  • PARI
    lista(nn)=my(v=vector(nn), p=2); for(n=1, nn, until(isprime(p+1024), p=nextprime(p+1)); v[n]=p); v \\ Winston de Greef, Mar 20 2023

A054987 Smallest composite x such that sigma(x+2^n) = sigma(x) + 2^n.

Original entry on oeis.org

434, 305635357, 27, 39, 106645, 69, 2275, 63, 6475, 249, 7735, 3703, 10803, 16383, 58869, 51181, 87951, 1695, 9579, 105237, 98829, 1143369, 789609, 11625, 14038691, 178975, 48627929, 1881333, 402373721, 2667945, 82915599, 353195221, 70106601
Offset: 1

Views

Author

Labos Elemer, May 29 2000

Keywords

Comments

The sequence is initiated by smallest of A015915. Special primes of A023202, A049488-A049491 also satisfy the Sigma[p+2^w]=Sigma[p]+2^w relation

Examples

			For the term 69: Sigma[69+2^6] = Sigma[133] = 1+7+19+133 = Sigma[69]+64 = (1+3+23+69)+64 = 160.
		

Crossrefs

Programs

  • Mathematica
    Table[ Select[ Range[ 1, 110000 ], Equal[ EulerPhi[ #+2^k ]-EulerPhi[ # ]-2^k, 0 ] &&!PrimeQ[ # ]& ], {k, 1, 22} ]
  • PARI
    a(n)=my(N=2^n,x=3); while(isprime(x++) || sigma(x+N) != sigma(x)+N,); x \\ Charles R Greathouse IV, Mar 11 2014

Extensions

More terms from Labos Elemer, Aug 14 2003
a(21) corrected and a(27)-a(33) from Donovan Johnson, Nov 30 2008
Showing 1-10 of 18 results. Next