A022915
Multinomial coefficients (0, 1, ..., n)! = C(n+1,2)!/(0!*1!*2!*...*n!).
Original entry on oeis.org
1, 1, 3, 60, 12600, 37837800, 2053230379200, 2431106898187968000, 73566121315513295589120000, 65191584694745586153436251091200000, 1906765806522767212441719098019963758016000000, 2048024348726152339387799085049745725891853852479488000000
Offset: 0
From _Gus Wiseman_, Aug 12 2020: (Start)
The a(3) = 60 permutations of the prime indices of A006939(3) = 360:
(111223) (121123) (131122) (212113) (231211)
(111232) (121132) (131212) (212131) (232111)
(111322) (121213) (131221) (212311) (311122)
(112123) (121231) (132112) (213112) (311212)
(112132) (121312) (132121) (213121) (311221)
(112213) (121321) (132211) (213211) (312112)
(112231) (122113) (211123) (221113) (312121)
(112312) (122131) (211132) (221131) (312211)
(112321) (122311) (211213) (221311) (321112)
(113122) (123112) (211231) (223111) (321121)
(113212) (123121) (211312) (231112) (321211)
(113221) (123211) (211321) (231121) (322111)
(End)
A190945 counts the case of anti-run permutations.
A317829 counts partitions of this multiset.
A325617 is the version for factorials instead of superprimorials.
A006939 lists superprimorials or Chernoff numbers.
A008480 counts permutations of prime indices.
-
with(combinat):
a:= n-> multinomial(binomial(n+1, 2), $0..n):
seq(a(n), n=0..12); # Alois P. Heinz, May 18 2013
-
Table[Apply[Multinomial ,Range[n]], {n, 0, 20}] (* Geoffrey Critzer, Dec 09 2012 *)
Table[Multinomial @@ Range[n], {n, 0, 20}] (* Eric W. Weisstein, Jul 14 2017 *)
Table[Binomial[n + 1, 2]!/BarnesG[n + 2], {n, 0, 20}] (* Eric W. Weisstein, Jul 14 2017 *)
Table[Length[Permutations[Join@@Table[i,{i,n},{i}]]],{n,0,4}] (* Gus Wiseman, Aug 12 2020 *)
-
a(n) = binomial(n+1,2)!/prod(k=1, n, k^(n+1-k)); \\ Michel Marcus, May 02 2019
More terms from Larry Reeves (larryr(AT)acm.org), Apr 11 2001
A060371
a(n) = (prime(n) - 1)! + 1.
Original entry on oeis.org
2, 3, 25, 721, 3628801, 479001601, 20922789888001, 6402373705728001, 1124000727777607680001, 304888344611713860501504000001, 265252859812191058636308480000001, 371993326789901217467999448150835200000001
Offset: 1
- Harry J. Smith, Table of n, a(n) for n = 1..88 (adapted by Vincenzo Librandi, Oct 17 2017)
- Takashi Agoh, Karl Dilcher and Ladislav Skula, Wilson quotients for composite moduli, Math. Comp. 67 (1998), 843-861. MR 98h:11003.
- C. K. Caldwell, Wilson Primes
- R. Crandall, K. Dilcher and C. Pomerance, A search for Wieferich and Wilson primes, Math. Comp., 66 (1997), 433-449. MR 97c:11004.
-
[Factorial(NthPrime(n)-1)+1: n in [1..15]]; // Vincenzo Librandi, Oct 17 2017
-
Table[(Prime[n] - 1)! + 1, {n, 12}] (* Alonso del Arte, Feb 07 2014 *)
-
{ n=1; forprime (p=1, 524, write("b060371.txt", n++, " ", (p - 1)! + 1); ) } \\ Harry J. Smith, Jul 04 2009
A283261
Product of the different products of subsets of the set of numbers from 1 to n.
Original entry on oeis.org
1, 1, 2, 36, 331776, 42998169600000000, 13974055172471046820331520000000000000, 1833132881579690383668380351534446872452674453158326975200092938148249600000000000000000000000000
Offset: 0
Rows with subsets of the sets of numbers from 1 to n:
{},
{}, {1};
{}, {1}, {2}, {1, 2};
{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3};
...
Rows with the products of elements of these subsets:
1;
1, 1;
1, 1, 2, 2;
1, 1, 2, 3, 2, 3, 6, 6;
...
Rows with the different products of elements of these subsets:
1;
1;
1, 2;
1, 2, 3, 6;
...
a(0) = 1, a(1) = (1), a(2) = (1*2) = 2, a(3) = (1*2*3*6) = 36, ... .
-
b:= proc(n) option remember; `if`(n=0, {1},
map(x-> [x, x*n][], b(n-1)))
end:
a:= n-> mul(i, i=b(n)):
seq(a(n), n=0..7); # Alois P. Heinz, Aug 01 2022
-
Table[Times @@ Union@ Map[Times @@ # &, Subsets@ Range@ n], {n, 7}] (* Michael De Vlieger, Mar 05 2017 *)
-
a(n)=my(v=[2..n]); factorback(Set(vector(2^(n-1),i, factorback(vecextract(v,i-1))))) \\ Charles R Greathouse IV, Mar 06 2017
A351884
Irregular triangle read by rows: T(n,k) is the number of sets of lists with distinct block sizes (as in A088311(n)) and containing exactly k lists.
Original entry on oeis.org
1, 0, 1, 0, 2, 0, 6, 6, 0, 24, 24, 0, 120, 240, 0, 720, 1440, 720, 0, 5040, 15120, 5040, 0, 40320, 120960, 80640, 0, 362880, 1451520, 1088640, 0, 3628800, 14515200, 14515200, 3628800, 0, 39916800, 199584000, 199584000, 39916800, 0, 479001600, 2395008000, 3353011200, 958003200
Offset: 0
Triangle T(n,k) begins:
1;
0, 1;
0, 2;
0, 6, 6;
0, 24, 24;
0, 120, 240;
0, 720, 1440, 720;
0, 5040, 15120, 5040;
0, 40320, 120960, 80640;
...
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1)+expand(x*b(n-i, min(i-1, n-i)))*n!/(n-i)!))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
seq(T(n), n=0..12); # Alois P. Heinz, Feb 23 2022
-
nn = 13; Prepend[Map[Prepend[#, 0] &, Drop[Map[Select[#, # > 0 &] &,Range[0, nn]! CoefficientList[Series[Product[1 + y x^i, {i, 1, nn}], {x, 0, nn}],{x,y}]], 1]], {1}] // Grid
A091478
Table of graphs with n (>=0) nodes and k (>=0) edges. Each type of object labeled from its own label set.
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 6, 6, 1, 6, 30, 120, 360, 720, 720, 1, 10, 90, 720, 5040, 30240, 151200, 604800, 1814400, 3628800, 3628800, 1, 15, 210, 2730, 32760, 360360, 3603600, 32432400, 259459200, 1816214400, 10897286400, 54486432000, 217945728000, 653837184000, 1307674368000, 1307674368000
Offset: 0
1;
1;
1, 1;
1, 3, 6, 6;
1, 6, 30, 120, 360, 720, 720;
...
- F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 114 (2.4.44).
Row lengths:
A000124(n-1) for n>=1.
A374293
a(n)/binomial(n,2)! is the probability that the minimum spanning tree of the complete graph of n vertices with i.i.d. random edge weights is a specific path.
Original entry on oeis.org
1, 1, 2, 44, 27120, 882241920, 2443792425984000, 846533597741050576896000, 50571850611494440562578575851520000, 686805008584962439650318114385825747697664000000, 2701735270674169239689693528384644314472371275610193920000000000, 3819958423456547324072333722421751679308286064300212197312630212725309440000000000
Offset: 1
a(3) = 2 because there are 2 orderings of the edges a, b, and c of K_3 that give the path {a, b}: (a, b, c) and (b, a, c).
- Jamie Tucker-Foltz, Table of n, a(n) for n = 1..16
- Eric Babson, Moon Duchin, Annina Iseli, Pietro Poggi-Corradini, Dylan Thurston, and Jamie Tucker-Foltz, Models of Random Spanning Trees, arXiv:2407.20226 [math.CO], 2024.
- Jamie Tucker-Foltz, Code to compute a(n) on GitHub.
-
E(p,m)={sum(k=0, m, sum(i=0, k, polcoef(p, i)*i!*(m-i)! )*x^k/(k!*(m-k)!))}
seq(n)={my(v=vector(n)); v[1]=1; for(n=2, n, my(p=sum(k=1, n-1, v[k]*v[n-k])); v[n]=E(intformal(p), binomial(n,2))); vector(n, n, my(m=binomial(n,2)); m!*polcoef(v[n], m))} \\ Andrew Howroyd, Jul 31 2024
Showing 1-6 of 6 results.
Comments