cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A005893 Number of points on surface of tetrahedron; coordination sequence for sodalite net (equals 2*n^2+2 for n > 0).

Original entry on oeis.org

1, 4, 10, 20, 34, 52, 74, 100, 130, 164, 202, 244, 290, 340, 394, 452, 514, 580, 650, 724, 802, 884, 970, 1060, 1154, 1252, 1354, 1460, 1570, 1684, 1802, 1924, 2050, 2180, 2314, 2452, 2594, 2740, 2890, 3044, 3202, 3364, 3530, 3700, 3874, 4052, 4234
Offset: 0

Views

Author

Keywords

Comments

Number of n-matchings of the wheel graph W_{2n} (n > 0). Example: a(2)=10 because in the wheel W_4 (rectangle ABCD and spokes OA,OB,OC,OD) we have the 2-matchings: (AB, OC), (AB, OD), (BC, OA), (BC,OD), (CD,OA), (CD,OB), (DA,OB), (DA,OC), (AB,CD) and (BC,DA). - Emeric Deutsch, Dec 25 2004
For n > 0 a(n) is the difference of two tetrahedral (or pyramidal) numbers: binomial(n+3, 3) = (n+1)(n+2)(n+3)/6. a(n) = A000292(n+1) - A000292(n-3) = (n+1)(n+2)(n+3)/6 - (n-3)(n-2)(n-1)/6. - Alexander Adamchuk, May 20 2006; updated by Peter Munn, Aug 25 2017 due to changed offset in A000292
Equals binomial transform of [1, 3, 3, 1, -1, 1, -1, 1, -1, 1, ...]. Binomial transform of A005893 = nonzero terms of A053545: (1, 5, 19, 63, 191, ...). - Gary W. Adamson, Apr 28 2008
Disregarding the terms < 10, the sums of four consecutive triangular numbers (A000217). - Rick L. Shepherd, Sep 30 2009
Use a set of n concentric circles where n >= 0 to divide the plane. a(n) is the maximal number of regions after the 2nd division. - Frank M Jackson, Sep 07 2011
Euler transform of length 4 sequence [4, 0, 0, -1]. - Michael Somos, May 14 2014
Also, growth series for affine Coxeter group (or affine Weyl group) A_3 or D_3. - N. J. A. Sloane, Jan 11 2016
For n > 2 the generalized Pell's equation x^2 - 2*(a(n) - 2)y^2 = (a(n) - 4)^2 has a finite number of positive integer solutions. - Muniru A Asiru, Apr 19 2016
Union of A188896, A277449, {1,4}. - Muniru A Asiru, Nov 25 2016
Interleaving of A008527 and A108099. - Bruce J. Nicholson, Oct 14 2019

Examples

			G.f. = 1 + 4*x + 10*x^2 + 20*x^3 + 34*x^4 + 52*x^5 + 74*x^6 + 100*x^7 + ...
		

References

  • N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10b, page 231, W_a(t).
  • H. S. M. Coxeter, "Polyhedral numbers," in R. S. Cohen et al., editors, For Dirk Struik. Reidel, Dordrecht, 1974, pp. 25-35.
  • B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #28.
  • R. W. Marks and R. B. Fuller, The Dymaxion World of Buckminster Fuller. Anchor, NY, 1973, p. 46.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. similar sequences listed in A255843.
The growth series for the affine Coxeter groups D_3 through D_12 are A005893 and A266759-A266767.
For partial sums see A005894.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Programs

Formula

G.f.: (1 - x^4)/(1-x)^4.
a(n) = A071619(n-1) + A071619(n) + A071619(n+1), n > 0. - Ralf Stephan, Apr 26 2003
a(n) = binomial(n+3, 3) - binomial(n-1, 3) for n >= 1. - Mitch Harris, Jan 08 2008
a(n) = (n+1)^2 + (n-1)^2. - Benjamin Abramowitz, Apr 14 2009
a(n) = A000217(n-2) + A000217(n-1) + A000217(n) + A000217(n+1) for n >= 2. - Rick L. Shepherd, Sep 30 2009
a(n) = 2*n^2 - 0^n + 2. - Vincenzo Librandi, Sep 27 2011
a(0)=1, a(1)=4, a(2)=10, a(3)=20, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Feb 26 2012
a(n) = A228643(n+1,2) for n > 0. - Reinhard Zumkeller, Aug 29 2013
a(n) = a(-n) for all n in Z. - Michael Somos, May 14 2014
For n >= 2: a(n) = a(n-1) + 4*n - 2. - Bob Selcoe, Mar 22 2016
E.g.f.: -1 + 2*(1 + x + x^2)*exp(x). - Ilya Gutkovskiy, Apr 19 2016
a(n) = 2*A002522(n), n>0. - R. J. Mathar, May 30 2022
From Amiram Eldar, Sep 16 2022: (Start)
Sum_{n>=0} 1/a(n) = (coth(Pi)*Pi + 3)/4.
Sum_{n>=0} (-1)^n/a(n) = (cosech(Pi)*Pi + 3)/4. (End)
Empirical: Integral_{u=-oo..+oo} sigmoid(u)*log(sigmoid(n * u)) du = -Pi^2*a(n) / (24*n), where sigmoid(x) = 1/(1+exp(-x)). Also works for non-integer n>0. - Carlo Wood, Dec 04 2023
Let P(k,n) be the n-th k-gonal number. Then P(a(k),n) = (k*n-k+1)^2 + (k-1)^2*(n-1). - Charlie Marion, May 15 2024

A053730 a(n) = 2^(n-2)*(n^2 - n + 4).

Original entry on oeis.org

1, 2, 6, 20, 64, 192, 544, 1472, 3840, 9728, 24064, 58368, 139264, 327680, 761856, 1753088, 3997696, 9043968, 20316160, 45350912, 100663296, 222298112, 488636416, 1069547520, 2332033024, 5066719232, 10972299264, 23689428992
Offset: 0

Views

Author

N. J. A. Sloane, Mar 24 2000

Keywords

Crossrefs

Cf. A053545.

Programs

  • GAP
    List([0..30], n-> 2^(n-2)*(n^2 -n +4)); # G. C. Greubel, Sep 06 2019
  • Magma
    I:=[1, 2, 6]; [n le 3 select I[n] else 6*Self(n-1)-12*Self(n-2) +8*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Apr 28 2012
    
  • Maple
    seq(2^(n-2)*(n^2 -n +4), n=0..30); # G. C. Greubel, Sep 06 2019
  • Mathematica
    CoefficientList[Series[(1-4*x+6*x^2)/(1-2*x)^3,{x,0,30}],x] (* Vincenzo Librandi, Apr 28 2012 *)
    LinearRecurrence[{6,-12,8}, {1,2,6}, 30] (* G. C. Greubel, Sep 06 2019 *)
  • PARI
    vector(30, n, 2^(n-3)*(n^2 -3*n +6)) \\ G. C. Greubel, Sep 06 2019
    
  • Sage
    [2^(n-2)*(n^2 -n +4) for n in (0..30)] # G. C. Greubel, Sep 06 2019
    

Formula

G.f.: (1-4*x+6*x^2)/(1-2*x)^3. - Colin Barker, Apr 01 2012
a(n) = 6*a(n-1) - 12*a(n-2) + 8*a(n-3). - Vincenzo Librandi, Apr 28 2012
a(n) = Sum_{k=0..n} binomial(n,k) * A077028(n,k), where A077028(n,k) = (n-k)*k + 1. - Paul D. Hanna, Oct 11 2015

A196508 a(n) = 2^n*(n^2 - n + 4)-4.

Original entry on oeis.org

0, 4, 20, 76, 252, 764, 2172, 5884, 15356, 38908, 96252, 233468, 557052, 1310716, 3047420, 7012348, 15990780, 36175868, 81264636, 181403644, 402653180, 889192444, 1954545660, 4278190076, 9328132092, 20266876924, 43889197052
Offset: 0

Views

Author

R. J. Mathar, Oct 03 2011

Keywords

References

  • Jolley, Summation of Series, Dover (1961), eq. (46) on page 8.

Programs

Formula

a(n) = 2*2 + 4*4 + 7*8 + 11*16 + 16*32 + ... (n terms of A000124*A000079).
a(n) = 4*A053545(n).
G.f.: 4*x*(1 - 2*x + 2*x^2) / ( (x-1)*(2*x-1)^3 ).

A289714 Triangle T(n,k) read by rows: the number of semigroups of orientation-preserving partial transformations on n element with right waist k.

Original entry on oeis.org

1, 1, 1, 1, 3, 5, 1, 7, 19, 34, 1, 15, 63, 135, 235, 1, 31, 191, 471, 911, 1556, 1, 63, 543, 1503, 3183, 5883, 9969, 1, 127, 1471, 4495, 10319, 20483, 37031, 62602, 1, 255, 3839, 12799, 31615, 67007, 128607, 229743, 388343, 1, 511, 9727, 35071, 92671, 208735, 423583, 796687, 1412863, 2389768, 1
Offset: 0

Views

Author

R. J. Mathar, Sep 02 2017

Keywords

Examples

			1 ;
1 1 ;
1 3 5 ;
1 7 19 34 ;
1 15 63 135 235;
1 31 191 471 911 1556 ;
1 63 543 1503 3183 5883 9969 ;
1 127 1471 4495 10319 20483 37031 62602 ;
1 255 3839 12799 31615 67007 128607 229743 388343 ;
1 511 9727 35071 92671 208735 423583 796687 1412863 2389768 ;
1 1023 24063 93183 262143 625023 1336383 2638143 4894623 8637363 14621533 ;
		

Crossrefs

Cf. A289713 (row sums), A000225 (column 1), A053545 (column 2)

Programs

  • Maple
    A289714 := proc(n,k)
        if k = 0 then
            1;
        else
            n*add(binomial(n-1,r-1)*binomial(r+k-2,r-1),r=1..n)-(n-2)*2^(n-1)-1 ;
        end if ;
    end proc:
Showing 1-4 of 4 results.