cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A124621 Numbers k such that 5^k + 4 is prime.

Original entry on oeis.org

0, 2, 6, 10, 102, 494, 794, 1326, 5242, 5446, 24602, 87606, 188558
Offset: 1

Views

Author

Artur Jasinski, Dec 21 2006

Keywords

Comments

a(13) > 10^5. - Robert Price, Feb 03 2014
a(14) > 2*10^5. - Tyler NeSmith, May 04 2021

Examples

			5^2 + 4 = 29 is prime, so 2 is a term.
		

Crossrefs

Cf. A059613.

Programs

Extensions

Added the first term 0 by Vincenzo Librandi, Oct 01 2012
a(9) - a(10) from Bruno Berselli, Aug 12 2013
a(11)-a(12) from Robert Price, Feb 03 2014
a(13) from Tyler NeSmith, May 04 2021

A191469 Numbers n such that 7^n - 6 is prime.

Original entry on oeis.org

2, 3, 6, 9, 21, 25, 33, 49, 54, 133, 245, 255, 318, 1023, 1486, 3334, 6821, 8555, 11605, 42502, 44409, 90291, 92511, 140303
Offset: 1

Views

Author

Vincenzo Librandi, Jun 06 2011

Keywords

Comments

a(14)=1023 and a(15)=1486 correspond to BPSW strong probable primes (passing PARI's ispseudoprime()). - Joerg Arndt, Jun 06 2011
a(25) > 2*10^5. - Robert Price, Nov 14 2014

Crossrefs

Programs

  • Magma
    [n: n in [1..1000]| IsPrime(7^n-6)]
    
  • Maple
    A191469:=n->`if`(isprime(7^n-6),n,NULL): seq(A191469(n), n=1..10^3); # Wesley Ivan Hurt, Nov 14 2014
  • Mathematica
    Select[Range[1,5000],PrimeQ[7^#-6]&] (* Vincenzo Librandi, Aug 05 2012 *)
  • PARI
    for(n=1, 10^6, if(isprime(7^n-6), print1(n, ", ")))

Extensions

a(17)-a(23) from Robert Price, Jan 24 2014
a(24) from Robert Price, Nov 14 2014

A220290 4-hyperperfect numbers: n = 4*(sigma(n)-n-1) + 1.

Original entry on oeis.org

1950625, 1220640625, 186264514898681640625
Offset: 1

Views

Author

Arkadiusz Wesolowski, Dec 11 2012

Keywords

Comments

For all k in A059613, (5^k-4)*5^(k-1) is a term. In particular, k=15 gives a term 186264514898681640625.

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 2*10^6, 4], # + 3 == 4*(DivisorSigma[1, #] - #) &]

Extensions

a(3) from Max Alekseyev, Jun 01 2025

A164785 a(n) = 5^n - 4.

Original entry on oeis.org

1, 21, 121, 621, 3121, 15621, 78121, 390621, 1953121, 9765621, 48828121, 244140621, 1220703121, 6103515621, 30517578121, 152587890621, 762939453121, 3814697265621, 19073486328121, 95367431640621, 476837158203121
Offset: 1

Views

Author

Daniel Minoli (daniel.minoli(AT)ses.com), Aug 26 2009

Keywords

Comments

Minoli defined the sequences and concepts that follow in the 1980 IEEE paper below: - Sequence m(n,t) = (n^t) - (n-1) for t=2 to infinity is called a Mersenne Sequence Rooted on n - If n is prime, this sequence is called a Legitimate Mersenne Sequence - Any j belonging to the sequence m(n,t) is called a Generalized Mersenne Number (n-GMN) - If j belonging to the sequence m (n,t) is prime, it is then called a n-Generalized Mersenne Prime (n-GMP). Note: m (n,t) = n* m (n,t-1) + n^2 - 2*n+1. This sequence related to sequences: A014232 and A014224; A135535 and A059266. These numbers play a role in the context of hyperperfect numbers. For additional references, beyond key ones listed below, see A164783.

References

  • Daniel Minoli, Voice over MPLS, McGraw-Hill, New York, NY, 2002, ISBN 0-07-140615-8 (p.114-134)

Crossrefs

Cf. A059613.

Programs

Formula

a(n) = 5*a(n-1) + 16 with n > 1, a(1)=1. - Vincenzo Librandi, Nov 30 2010
a(n) = 6*a(n-1) - 5*a(n-2); a(1)=1, a(2)=21. - Harvey P. Dale, Jun 07 2012
G.f.: x*(1 + 15*x)/(1 - 6*x + 5*x^2). - Vincenzo Librandi, Feb 06 2013
E.g.f.: 3 + (exp(4*x) - 4)*exp(x). - Ilya Gutkovskiy, Jun 11 2016

Extensions

More terms a(9)-a(21) from Vincenzo Librandi, Oct 29 2009

A181285 Primes of the form 5^k - 4.

Original entry on oeis.org

3121, 78121, 30517578121, 710542735760100185871124267578121, 413590306276513837435704346034981426782906055450439453121
Offset: 1

Views

Author

Jonathan D. B. Hodgson, Oct 12 2010

Keywords

Examples

			3121 = 5^5 - 4 is prime and therefore is in the sequence.
		

Crossrefs

Programs

  • Maple
    n:=1000: S:={}: for i from 1 to n do if type(5^i-4,prime)=true then S:=S union {5^i-4} end if od; S;
  • Mathematica
    Select[5^Range[90]-4,PrimeQ] (* Harvey P. Dale, Aug 23 2013 *)

A217134 Numbers n such that 5^n - 8 is prime.

Original entry on oeis.org

2, 4, 10, 14, 88, 112, 140, 764, 3040, 11096, 24934, 25616, 54584, 93400
Offset: 1

Views

Author

Vincenzo Librandi, Oct 01 2012

Keywords

Comments

a(15) > 10^5. - Robert Price, Feb 03 2014

Crossrefs

Programs

  • Mathematica
    Select[Range[2, 5000], PrimeQ[5^# - 8] &]
  • PARI
    for(n=2, 5*10^3, if(isprime(5^n-8), print1(n", ")))

Extensions

a(10)-a(14) from Robert Price, Feb 03 2014

A305531 Smallest k >= 1 such that (n-1)*n^k + 1 is prime.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 3, 10, 3, 1, 2, 1, 1, 4, 1, 29, 14, 1, 1, 14, 2, 1, 2, 4, 1, 2, 4, 5, 12, 2, 1, 2, 2, 9, 16, 1, 2, 80, 1, 2, 4, 2, 3, 16, 2, 2, 2, 1, 15, 960, 15, 1, 4, 3, 1, 14, 1, 6, 20, 1, 3, 946, 6, 1, 18, 10, 1, 4, 1, 5, 42, 4, 1, 828, 1, 1, 2, 1, 12, 2, 6, 4, 30, 3, 3022, 2, 1, 1
Offset: 2

Views

Author

Eric Chen, Jun 04 2018

Keywords

Comments

a(prime(j)) + 1 = A087139(j).
a(123) > 10^5, a(342) > 10^5, see the Barnes link for the Sierpinski base-123 and base-342 problems.
a(251) > 73000, see A087139.

Crossrefs

For the numbers k such that these forms are prime:
a1(b): numbers k such that (b-1)*b^k-1 is prime
a2(b): numbers k such that (b-1)*b^k+1 is prime
a3(b): numbers k such that (b+1)*b^k-1 is prime
a4(b): numbers k such that (b+1)*b^k+1 is prime (no such k exists when b == 1 (mod 3))
a5(b): numbers k such that b^k-(b-1) is prime
a6(b): numbers k such that b^k+(b-1) is prime
a7(b): numbers k such that b^k-(b+1) is prime
a8(b): numbers k such that b^k+(b+1) is prime (no such k exists when b == 1 (mod 3)).
Using "-------" if there is currently no OEIS sequence and "xxxxxxx" if no such k exists (this occurs only for a4(b) and a8(b) for b == 1 (mod 3)):
.
b a1(b) a2(b) a3(b) a4(b) a5(b) a6(b) a7(b) a8(b)
--------------------------------------------------------------------
4 A272057 ------- ------- xxxxxxx A059266 A089437 A217348 xxxxxxx
7 A046866 A245241 ------- xxxxxxx A191469 A217130 A217131 xxxxxxx
11 A046867 A057462 ------- ------- ------- ------- ------- -------
12 A079907 A251259 ------- ------- ------- A137654 ------- -------
13 A297348 ------- ------- xxxxxxx ------- ------- ------- xxxxxxx
14 A273523 ------- ------- ------- ------- ------- ------- -------
15 ------- ------- ------- ------- ------- ------- ------- -------
16 ------- ------- ------- xxxxxxx ------- ------- ------- xxxxxxx
Cf. (smallest k such that these forms are prime) A122396 (a1(b)+1 for prime b), A087139 (a2(b)+1 for prime b), A113516 (a5(b)), A076845 (a6(b)), A178250 (a7(b)).

Programs

  • PARI
    a(n)=for(k=1,2^16,if(ispseudoprime((n-1)*n^k+1),return(k)))

A174267 Primes p such that 5^p - 4 is also prime.

Original entry on oeis.org

5, 7, 47
Offset: 1

Views

Author

Vincenzo Librandi, Mar 14 2010

Keywords

Comments

If it exists, a(4) > 48091. - J.W.L. (Jan) Eerland, Nov 13 2022
If it exists, a(4) > 2*10^5 (cf. comment by Tyler NeSmith in A059613). - Michael S. Branicky, Aug 17 2024

Examples

			For p=5, 5^5-4=3121; p=7, 5^7-4=78121; p=47, 5^47-4= 710542735760100185871124267578121
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(3500) | IsPrime(5^p-4)];
    
  • PARI
    is(n)=isprime(n) && isprime(5^n-4) \\ Charles R Greathouse IV, Sep 06 2016

Formula

A000040 INTERSECT A059613. - R. J. Mathar, Apr 15 2010

A378868 Numbers k such that 5^k - 22 is prime.

Original entry on oeis.org

2, 3, 31, 79, 491, 3019, 3623, 4175, 9957, 21963, 71637, 80551, 80831
Offset: 1

Views

Author

Robert Price, Dec 09 2024

Keywords

Comments

a(14) > 10^5. - Michael S. Branicky, Dec 24 2024

Examples

			3 is a term because 5^3 - 22 = 103 is prime.
		

Crossrefs

Programs

  • Magma
    [k: k in [0..1000] |IsPrime (5^k-22)];
  • Mathematica
    Select[Range[0,5000],PrimeQ[5^#-22]&]

Extensions

a(8)-a(10) from Michael S. Branicky, Dec 17 2024
a(11)-a(13) from Michael S. Branicky, Dec 22 2024
Showing 1-9 of 9 results.