cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A059919 Generalized Fermat numbers: 3^(2^n)+1, n >= 0.

Original entry on oeis.org

4, 10, 82, 6562, 43046722, 1853020188851842, 3433683820292512484657849089282, 11790184577738583171520872861412518665678211592275841109096962
Offset: 0

Views

Author

Henry Bottomley, Feb 08 2001

Keywords

Comments

Generalized Fermat numbers (Ribenboim (1996))
F_n(a) := F_n(a,1) = a^(2^n) + 1, a >= 2, n >= 0, can't be prime if a is odd (as is the case for this sequence). - Daniel Forgues, Jun 19-20 2011

Examples

			a(0) = 3^(2^0)+1 = 3^1+1 = 4 = 2*(1)+2 = 2*(empty product)+2;
a(1) = 3^(2^1)+1 = 3^2+1 = 10 = 2*(4)+2;
a(2) = 3^(2^2)+1 = 3^4+1 = 82 = 2*(4*10)+2;
a(3) = 3^(2^3)+1 = 3^8+1 = 6562 = 2*(4*10*82)+2;
a(4) = 3^(2^4)+1 = 3^16+1 = 43046722 = 2*(4*10*82*6562)+2;
a(5) = 3^(2^5)+1 = 3^32+1 = 1853020188851842 = 2*(4*10*82*6562*43046722)+2;
		

Crossrefs

Cf. A000215 (Fermat numbers: 2^(2^n) + 1, n >= 0).
Cf. A059917 ((3^(2^n)+1)/2).

Programs

Formula

a(0) = 4; a(n) = (a(n-1)-1)^2 + 1, n >= 1.
a(n) = A011764(n)+1 = A059918(n+1)/A059918(n) = (A059917(n+1)-1)/(A059917(n)-1) = (A059723(n)/A059723(n+1))*(A059723(n+2)-A059723(n+1))/(A059723(n+1)-A059723(n))
a(n) = A057727(n)-1. - R. J. Mathar, Apr 23 2007
a(n) = 2*a(n-1)*a(n-2)*...*a(1)*a(0) + 2, n >= 0, where for n = 0, we get 2*(empty product, i.e., 1) + 2 = 4 = a(0).
The above formula implies the GCD of any pair of terms is 2, which means that the terms of (3^(2^n)+1)/2 (A059917) are pairwise coprime. - Daniel Forgues, Jun 20 & 22 2011
Sum_{n>=0} 2^n/a(n) = 1/2. - Amiram Eldar, Oct 03 2022

Extensions

Edited by Daniel Forgues, Jun 19 2011 and Jun 20 2011

A059722 a(n) = n*(2*n^2 - 2*n + 1).

Original entry on oeis.org

0, 1, 10, 39, 100, 205, 366, 595, 904, 1305, 1810, 2431, 3180, 4069, 5110, 6315, 7696, 9265, 11034, 13015, 15220, 17661, 20350, 23299, 26520, 30025, 33826, 37935, 42364, 47125, 52230, 57691, 63520, 69729, 76330, 83335, 90756, 98605, 106894, 115635, 124840
Offset: 0

Views

Author

Henry Bottomley, Feb 07 2001

Keywords

Comments

Mean of the first four nonnegative powers of 2n+1, i.e., ((2n+1)^0 + (2n+1)^1 + (2n+1)^2 + (2n+1)^3)/4. E.g., a(2) = (1 + 3 + 9 + 27)/4 = 10.
Equatorial structured meta-diamond numbers, the n-th number from an equatorial structured n-gonal diamond number sequence. There are no 1- or 2-gonal diamonds, so 1 and (n+2) are used as the first and second terms since all the sequences begin as such. - James A. Record (james.record(AT)gmail.com), Nov 07 2004
Starting with offset 1 = row sums of triangle A143803. - Gary W. Adamson, Sep 01 2008
Form an array from the antidiagonals containing the terms in A002061 to give antidiagonals 1; 3,3; 7,4,7; 13,8,8,13; 21,14,9,14,21; and so on. The difference between the sum of the terms in n+1 X n+1 matrices and those in n X n matrices is a(n) for n>0. - J. M. Bergot, Jul 08 2013
Sum of the numbers from (n-1)^2 to n^2. - Wesley Ivan Hurt, Sep 08 2014

Crossrefs

Cf. A000330, A005900, A081436, A100178, A100179, A059722: "equatorial" structured diamonds; A000447: "polar" structured meta-diamond; A006484 for other structured meta numbers; and A100145 for more on structured numbers. - James A. Record (james.record(AT)gmail.com), Nov 07 2004

Programs

Formula

a(n) = A053698(2*n-1)/4.
a(n) = Sum_{j=1..n} ((n+j-1)^2-j^2+1). - Zerinvary Lajos, Sep 13 2006
From R. J. Mathar, Sep 02 2008: (Start)
G.f.: x*(1 + x)*(1 + 5*x)/(1 - x)^4.
a(n) = A002414(n-1) + A002414(n).
a(n+1) - a(n) = A136392(n+1). (End)
a(n) = (A000290(n) + A000290(n+1)) * (A000217(n+1) - A000217(n)). - J. M. Bergot, Nov 02 2012
a(n) = n * A001844(n-1). - Doug Bell, Aug 18 2015
a(n) = A000217(n^2) - A000217(n^2-2*n). - Bruno Berselli, Jun 26 2018
E.g.f.: exp(x)*x*(1 + 4*x + 2*x^2). - Stefano Spezia, Jun 20 2021

Extensions

Edited with new definition by N. J. A. Sloane, Aug 29 2008

A059721 Mean of first six positive powers of n, i.e., (n + n^2 + n^3 + n^4 + n^5 + n^6)/6.

Original entry on oeis.org

0, 1, 21, 182, 910, 3255, 9331, 22876, 49932, 99645, 185185, 324786, 542906, 871507, 1351455, 2034040, 2982616, 4274361, 6002157, 8276590, 11228070, 15009071, 19796491, 25794132, 33235300, 42385525, 53545401, 67053546, 83289682, 102677835, 125689655, 152847856
Offset: 0

Views

Author

Henry Bottomley, Feb 07 2001

Keywords

Examples

			a(2) = (2 + 4 + 8 + 16 + 32 + 64)/6 = 126/6 = 21.
		

Crossrefs

Programs

  • Mathematica
    Table[Total[n^Range[6]]/6,{n,0,30}]  (* Harvey P. Dale, Jan 29 2011 *)
  • PARI
    a(n) = { if(n==1, 1, (n^7 - n)/(6*n - 6)) } \\ Harry J. Smith, Jun 28 2009

Formula

a(n) = (n^7 - n)/(6n - 6) = A053700(n)*n/6.
G.f.: x*(1+14*x+56*x^2+42*x^3+7*x^4)/(1-x)^7. [Colin Barker, May 08 2012]

A059917 a(n) = (3^(2^n) + 1)/2 = A059919(n)/2, n >= 0.

Original entry on oeis.org

2, 5, 41, 3281, 21523361, 926510094425921, 1716841910146256242328924544641, 5895092288869291585760436430706259332839105796137920554548481
Offset: 0

Views

Author

Henry Bottomley, Feb 08 2001

Keywords

Comments

Average of first 2^(n+1) powers of 3 divided by average of first 2^n powers of 3.
Numerator of b(n) where b(n) = (1/2)*(b(n-1) + 1/b(n-1)), b(0)=2. - Vladeta Jovovic, Aug 15 2002
From Daniel Forgues, Jun 22 2011: (Start)
Since for the generalized Fermat numbers 3^(2^n)+1 (A059919), we have a(n) = 2*a(n-1)*a(n-2)*...*a(1)*a(0) + 2, n >= 0, where for n = 0, we get 2*(empty product, i.e., 1) + 2 = 4 = a(0). This formula implies that the GCD of any pair of terms of A059919 is 2, which means that the terms of (3^(2^n)+1)/2 (A059917) are pairwise coprime.
2, 5, 41, 21523361, 926510094425921 are prime. 3281 = 17*193. (End)
a(0), a(1), a(2), a(4), a(5), and a(6) are prime. Conjecture: a(n) is composite for all n > 6. - Thomas Ordowski, Dec 26 2012
This may be a primality test for Mersenne numbers. a(2) = 41 == -1 mod 7 (=M3), a(4) = 21523361 == 30 == -1 mod 31 (=M5). However, a(10) is not == -1 mod M11. - Nobuyuki Fujita, May 16 2015

Examples

			a(2) = Average(1,3,9,27,81,243,729,2187)/Average(1,3,9,27) = 410/10 = 41.
		

Crossrefs

Cf. A059918, A059919. Primes are in A093625.

Programs

  • GAP
    List([0..10],n->(3^(2^n)+1)/2); # Muniru A Asiru, Aug 07 2018
  • Magma
    [(3^(2^n)+1)/2: n in [0..10]]; // Vincenzo Librandi, May 16 2015
    
  • Maple
    seq((3^(2^n)+1)/2,n=0..11); # Muniru A Asiru, Aug 07 2018
  • Mathematica
    Table[(3^(2^n) + 1)/2, {n, 0, 10}] (* Vincenzo Librandi, May 16 2015 *)
  • PARI
    { for (n=0, 11, write("b059917.txt", n, " ", (3^(2^n) + 1)/2); ) } \\ Harry J. Smith, Jun 30 2009
    

Formula

a(n) = a(n-1)*(3^(2^(n-1)) + 1) - 3^(2^(n-1)) = A059723(n+1)/A059723(n) = A059918(n) + 1 = a(n-1)*A059919(n-1) - A011764(n-1).
a(0) = 2; a(n) = ((2*a(n-1) - 1)^2 + 1)/2, n >= 1. - Daniel Forgues, Jun 22 2011

A059918 a(n) = (3^(2^n)-1)/2.

Original entry on oeis.org

1, 4, 40, 3280, 21523360, 926510094425920, 1716841910146256242328924544640, 5895092288869291585760436430706259332839105796137920554548480
Offset: 0

Views

Author

Henry Bottomley, Feb 08 2001

Keywords

Comments

Denominator of b(n) where b(n) = 1/2*(b(n-1) + 1/b(n-1)), b(0)=2. - Vladeta Jovovic, Aug 15 2002

Crossrefs

Cf. A059917 (numerators).

Programs

  • Mathematica
    Array[(3^(2^#) - 1)/2 &, 8, 0] (* Michael De Vlieger, Feb 05 2022 *)
  • PARI
    { for (n=0, 11, write("b059918.txt", n, " ", (3^(2^n) - 1)/2); ) } \\ Harry J. Smith, Jun 30 2009

Formula

a(n) = a(n-1)*(3^(2^(n-1))+1) with a(0) = 1.
a(n) = (3^(2^n)-1)/2 = (A059723(n+1)-A059723(n))/A059723(n) = A059917(n)-1 = a(n-1)*A059919(n-1) = a(n-1)*(A011764(n-1)+1)
1 = Sum_{n>=0} 3^(2^n)/a(n+1). 1 = 3/4 + 9/40 + 81/3280 + 6561/21523360 + ...; with partial sums: 3/4, 39/40, 3279/3280, 21523359/21523360, ..., (a(n)-1)/a(n), ... . - Gary W. Adamson, Jun 22 2003
A136308(n) = A007089(a(n)). - Jason Kimberley, Dec 19 2012

A261066 a(n) = (7^(2^n) - 1) / 2^(n+2).

Original entry on oeis.org

6, 150, 180150, 519264540150, 8628341205030630049260150, 4764689404827483203666304150636608674826622242700150
Offset: 1

Views

Author

Marco Ripà, Aug 08 2015

Keywords

Comments

(m^(2^n)-1)/2^(n+2) is an integer for any odd value of m and n>0.
The next term, a(7), has 106 decimal digits.

Examples

			a(3) = (7^8 - 1)/2^5 = 180150.
		

Crossrefs

Programs

Formula

a(n) == 150 (mod 10^4) for all n > 1. - M. F. Hasler, Aug 11 2015

Extensions

a(5) corrected by Vincenzo Librandi, Aug 09 2015

A261067 a(n) = (11^(2^n) - 1)/2^(n + 2).

Original entry on oeis.org

15, 915, 6698715, 717964529118315, 16495138082306681918325119173515, 17413733142679306233865281770975943513633443105435651232476307915
Offset: 1

Views

Author

Marco Ripà, Aug 08 2015

Keywords

Comments

(m^(2^n) - 1)/2^(n + 2) is an integer for any odd value of m and n > 0.
In particular, for m = 11, a(n) is a multiple of 15.

Examples

			a(3) = (11^8 - 1)/2^5 = 6698715.
		

Crossrefs

Programs

Formula

a(n) = 15*A068533(n). - Michel Marcus, Aug 14 2015
Showing 1-7 of 7 results.