cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A022307 Number of distinct prime factors of n-th Fibonacci number.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 3, 3, 1, 3, 2, 4, 3, 2, 1, 4, 2, 2, 4, 4, 1, 5, 2, 4, 3, 2, 3, 5, 3, 3, 3, 6, 2, 5, 1, 5, 5, 3, 1, 6, 3, 5, 3, 4, 2, 6, 4, 6, 5, 3, 2, 8, 2, 3, 5, 6, 3, 5, 3, 5, 5, 7, 2, 8, 2, 4, 5, 5, 4, 6, 2, 9, 7, 3, 1, 9, 4, 3, 4, 9, 2, 10, 4, 6, 4, 2, 6, 9, 4, 5, 6
Offset: 0

Views

Author

Keywords

Comments

Although every prime divides some Fibonacci number, this is not true for the Lucas numbers. Exactly 1/3 of all primes do not divide any Lucas number. See Lagarias and Moree for more details. - Jonathan Vos Post, Dec 06 2006
First occurrence of k: 0, 3, 8, 15, 20, 30, 40, 70, 60, 80, 90, 140, 176, 120, 168, 180, 324, 252, 240, 378, ..., . - Robert G. Wilson v, Dec 10 2006 [Other than 0, this is sequence A060320. - Jon E. Schoenfield, Dec 30 2016]
Row lengths of table A060442. - Reinhard Zumkeller, Aug 30 2014
If k properly divides n then a(n) >= a(k) + 1, except for a(6) = a(3) = 1. - Robert Israel, Aug 18 2015

References

  • Alfred Brousseau, Fibonacci and Related Number Theoretic Tables, The Fibonacci Association, 1972, pages 1-8.

Crossrefs

Cf. A038575 (number of prime factors, counting multiplicity), A086597 (number of primitive prime factors).
Cf. A060442, A086598 (omega(Lucas(n))).
Cf. A060320. - Jon E. Schoenfield, Dec 30 2016

Programs

  • Haskell
    a022307 n = if n == 0 then 0 else a001221 $ a000045 n
    -- Reinhard Zumkeller, Aug 30 2014
    
  • Magma
    [0] cat [#PrimeDivisors(Fibonacci(n)): n in [1..100]]; // Vincenzo Librandi, Jul 26 2017
  • Mathematica
    Table[Length[FactorInteger[Fibonacci[n]]], {n, 150}]
  • PARI
    a(n)=omega(fibonacci(n)) \\ Charles R Greathouse IV, Feb 03 2014
    

Formula

a(n) = Sum{d|n} A086597(d), Mobius transform of A086597.
a(n) = A001221(A000045(n)) = omega(F(n)). - Jonathan Vos Post, Dec 06 2006

A060384 Number of decimal digits in n-th Fibonacci number.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 18
Offset: 0

Views

Author

Labos Elemer, Apr 03 2001

Keywords

Crossrefs

Programs

  • Haskell
    a060384 = a055642 . a000045  -- Reinhard Zumkeller, Mar 09 2013
  • Maple
    with(combinat): a:=n->nops(convert(fibonacci(n),base,10)): 1,seq(a(n),n=1..100); # Emeric Deutsch, May 19 2007
  • Mathematica
    Table[IntegerLength@ Fibonacci@ n, {n, 0, 84}] /. 0 -> 1 (* or *)
    Table[Floor[n Log10@ GoldenRatio - Log10@ 5/2] + 1, {n, 0, 84}] /. 0 -> 1 (* Michael De Vlieger, Jul 04 2016 *)
  • PARI
    print1("1, 1, "); gold=(1+sqrt(5))/2; for(n=2,100,print1(floor((n*log(gold)-log(5)/2)/log(10))+1", ")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), May 01 2007
    
  • PARI
    a(n) = #Str(fibonacci(n)); \\ Michel Marcus, Jul 04 2016
    

Formula

a(n) = floor(n*log(tau)/log(10)) +0 or +1 where tau is the golden ratio. - Benoit Cloitre, Oct 29 2002. [Corrected by Hans J. H. Tuenter, Jul 07 2025].
a(n) = floor(n*log_10(gold) - log_10(5)/2) + 1 for n >= 2, where gold is (1+sqrt(5))/2. - Herman Jamke (hermanjamke(AT)fastmail.fm), May 01 2007
a(n) = A055642(A000045(n)). - Reinhard Zumkeller, Mar 09 2013

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), May 01 2007

A303217 A(n,k) is the n-th index of a Fibonacci number with exactly k distinct prime factors; square array A(n,k), n>=1, k>=1, read by antidiagonals.

Original entry on oeis.org

3, 8, 4, 15, 9, 5, 20, 16, 10, 6, 30, 24, 18, 12, 7, 40, 36, 27, 21, 14, 11, 70, 48, 42, 28, 33, 19, 13, 60, 81, 54, 44, 32, 35, 22, 17, 80, 72, 104, 56, 45, 52, 37, 25, 23, 90, 84, 110, 105, 64, 50, 55, 38, 26, 29, 140, 126, 88, 112, 136, 78, 57, 74, 39, 31, 43
Offset: 1

Views

Author

Alois P. Heinz, Apr 19 2018

Keywords

Examples

			Square array A(n,k) begins:
   3,  8, 15, 20, 30,  40,  70,  60,  80,  90, ...
   4,  9, 16, 24, 36,  48,  81,  72,  84, 126, ...
   5, 10, 18, 27, 42,  54, 104, 110,  88, 165, ...
   6, 12, 21, 28, 44,  56, 105, 112,  96, 256, ...
   7, 14, 33, 32, 45,  64, 136, 114, 100, 258, ...
  11, 19, 35, 52, 50,  78, 148, 128, 108, 266, ...
  13, 22, 37, 55, 57,  92, 152, 130, 132, 296, ...
  17, 25, 38, 74, 63,  95, 164, 135, 138, 304, ...
  23, 26, 39, 77, 66,  99, 182, 147, 156, 322, ...
  29, 31, 46, 85, 68, 102, 186, 154, 184, 369, ...
		

Crossrefs

Programs

  • Maple
    F:= combinat[fibonacci]: with(numtheory):
    A:= proc() local h, p, q; p, q:= proc() [] end, 2;
          proc(n, k)
            while nops(p(k))
    				
  • Mathematica
    nmax = 12; maxIndex = 200;
    nu[n_] := nu[n] = PrimeNu[Fibonacci[n]];
    col[k_] := Select[Range[maxIndex], nu[#] == k&];
    T = Array[col, nmax];
    A[n_, k_] := T[[k, n]];
    Table[A[n-k+1, k], {n, 1, nmax}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jan 04 2020 *)

Formula

A000045(A(n,k)) = A303218(n,k).
A001221(A000045(A(n,k))) = k.

A060319 Smallest Fibonacci number with n distinct prime factors.

Original entry on oeis.org

1, 2, 21, 610, 6765, 832040, 102334155, 190392490709135, 1548008755920, 23416728348467685, 2880067194370816120, 81055900096023504197206408605, 2706074082469569338358691163510069157, 5358359254990966640871840, 57602132235424755886206198685365216, 18547707689471986212190138521399707760
Offset: 0

Views

Author

Labos Elemer, Mar 28 2001

Keywords

Examples

			a(5) = F(30) = 832040 = 2^3 * 5 * 11 * 41 * 61.
		

Crossrefs

Row n=1 of A303218.

Programs

  • Mathematica
    f[n_]:=Length@FactorInteger[Fibonacci[n]]; lst={};Do[Do[If[f[n]==q,Print[Fibonacci[n]];AppendTo[lst,Fibonacci[n]];Break[]],{n,280}],{q,18}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 23 2009 *)
    First /@ SortBy[#, Last] &@ Map[#[[1]] &, Values@ GroupBy[#, Last]] &@ Table[{#, PrimeNu@ #} &@ Fibonacci@ n, {n, 2, 200}] (* Michael De Vlieger, Feb 18 2017, Version 10 *)

A060385 Largest prime factor of n-th Fibonacci number.

Original entry on oeis.org

2, 3, 5, 2, 13, 7, 17, 11, 89, 3, 233, 29, 61, 47, 1597, 19, 113, 41, 421, 199, 28657, 23, 3001, 521, 109, 281, 514229, 61, 2417, 2207, 19801, 3571, 141961, 107, 2221, 9349, 135721, 2161, 59369, 421, 433494437, 307, 109441, 28657, 2971215073, 1103
Offset: 3

Views

Author

Labos Elemer, Apr 03 2001

Keywords

Comments

For n > 12, Fibonacci(n) is divisible by a primitive prime factor (one not dividing Fibonacci(1), ..., Fibonacci(n-1)). But all primes up to n-2 divide smaller Fibonacci numbers, see A001602, so a(n) >= n-1 for n > 12. This strengthens a more general theorem of Bravo and Luca. - Charles R Greathouse IV, Feb 01 2013

Examples

			F(82) = 2789 * 59369 * 370248451, so a(82) = 370248451.
		

Crossrefs

Programs

Formula

a(n) >= n - 1 for n > 12, see comments. It is not hard to show that a(n) > 1000 for n > 88. Similarly a(n) > 20641 for n > 120. - Charles R Greathouse IV, Feb 01 2013

A060383 a(1) = a(2) = 1; for n >2, a(n) = smallest prime factor of n-th Fibonacci number.

Original entry on oeis.org

1, 1, 2, 3, 5, 2, 13, 3, 2, 5, 89, 2, 233, 13, 2, 3, 1597, 2, 37, 3, 2, 89, 28657, 2, 5, 233, 2, 3, 514229, 2, 557, 3, 2, 1597, 5, 2, 73, 37, 2, 3, 2789, 2, 433494437, 3, 2, 139, 2971215073, 2, 13, 5, 2, 3, 953, 2, 5, 3, 2, 59, 353, 2, 4513, 557, 2, 3, 5, 2, 269, 3, 2, 5
Offset: 1

Views

Author

Labos Elemer, Apr 03 2001

Keywords

Examples

			For n=82: F(82) = 2789*59369*370248451, so a(82)=2789.
		

Crossrefs

Programs

  • Magma
    [1,1] cat [Minimum(PrimeDivisors(Fibonacci(n))): n in [3..70]]; // Vincenzo Librandi, Dec 25 2016
  • Mathematica
    f[n_] := (FactorInteger@ Fibonacci@ n)[[1,1]]; Array[f, 70] (* Robert G. Wilson v, Jul 07 2007 *)
  • PARI
    a(n) = if ((f=fibonacci(n))==1, 1, factor(f)[1,1]); \\ Michel Marcus, Nov 15 2014
    

Formula

a(n) = A020639(A000045(n)). - Michel Marcus, Nov 15 2014

Extensions

Better definition from Omar E. Pol, Apr 25 2008

A359850 a(n) is the index of the smallest tribonacci number (A000073) with exactly n distinct prime factors.

Original entry on oeis.org

2, 4, 8, 13, 20, 29, 49, 56, 101, 93, 124, 268, 221
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 15 2023

Keywords

Crossrefs

Extensions

a(11)-a(12) from Daniel Suteu, Jan 17 2023

A359851 a(n) is the index of the smallest tetranacci number (A000078) with exactly n distinct prime factors.

Original entry on oeis.org

3, 5, 8, 15, 20, 30, 53, 60, 80, 89, 130, 252
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 15 2023

Keywords

Crossrefs

Extensions

a(11) from Daniel Suteu, Jan 17 2023

A359853 a(n) is the index of the smallest Fibonacci n-step number with exactly n distinct prime factors.

Original entry on oeis.org

8, 13, 20, 18, 50, 56, 73, 95, 267
Offset: 2

Views

Author

Ilya Gutkovskiy, Jan 15 2023

Keywords

Crossrefs

Extensions

a(10) from Jinyuan Wang, Jan 17 2023

A229491 The index of the smallest Lucas number having exactly n distinct prime factors.

Original entry on oeis.org

1, 0, 6, 12, 30, 42, 45, 75, 126, 105, 175, 135, 255, 195, 285, 345, 435, 315, 693, 405, 525, 765, 585
Offset: 0

Views

Author

T. D. Noe, Oct 28 2013

Keywords

Crossrefs

Cf. A000032 (Lucas numbers).
Cf. A060320 (corresponding sequence for Fibonacci numbers).
Cf. A086598 (number of distinct factors in Lucas numbers).
Cf. A229490 (smallest Lucas number having exactly n distinct prime factors).
Showing 1-10 of 10 results.