cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A060384 Number of decimal digits in n-th Fibonacci number.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 18
Offset: 0

Views

Author

Labos Elemer, Apr 03 2001

Keywords

Crossrefs

Programs

  • Haskell
    a060384 = a055642 . a000045  -- Reinhard Zumkeller, Mar 09 2013
  • Maple
    with(combinat): a:=n->nops(convert(fibonacci(n),base,10)): 1,seq(a(n),n=1..100); # Emeric Deutsch, May 19 2007
  • Mathematica
    Table[IntegerLength@ Fibonacci@ n, {n, 0, 84}] /. 0 -> 1 (* or *)
    Table[Floor[n Log10@ GoldenRatio - Log10@ 5/2] + 1, {n, 0, 84}] /. 0 -> 1 (* Michael De Vlieger, Jul 04 2016 *)
  • PARI
    print1("1, 1, "); gold=(1+sqrt(5))/2; for(n=2,100,print1(floor((n*log(gold)-log(5)/2)/log(10))+1", ")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), May 01 2007
    
  • PARI
    a(n) = #Str(fibonacci(n)); \\ Michel Marcus, Jul 04 2016
    

Formula

a(n) = floor(n*log(tau)/log(10)) +0 or +1 where tau is the golden ratio. - Benoit Cloitre, Oct 29 2002. [Corrected by Hans J. H. Tuenter, Jul 07 2025].
a(n) = floor(n*log_10(gold) - log_10(5)/2) + 1 for n >= 2, where gold is (1+sqrt(5))/2. - Herman Jamke (hermanjamke(AT)fastmail.fm), May 01 2007
a(n) = A055642(A000045(n)). - Reinhard Zumkeller, Mar 09 2013

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), May 01 2007

A060320 Index of smallest Fibonacci number with exactly n distinct prime factors.

Original entry on oeis.org

1, 3, 8, 15, 20, 30, 40, 70, 60, 80, 90, 140, 176, 120, 168, 180, 324, 252, 240, 378, 450, 432, 552, 360, 420, 690, 504, 880, 630, 600, 756, 720, 900, 792, 840, 1296, 1050, 1350, 1140, 1080, 1200, 1824, 1260, 1512, 1320, 1560, 1680
Offset: 0

Views

Author

Labos Elemer, Mar 28 2001

Keywords

Comments

From Jon E. Schoenfield, Dec 28 2016: (Start)
Note that the presence of incompletely factored Fibonacci numbers with indices as low as 1301 does not prevent the drawing of conclusions such as "a(44) = 1320" with certainly. Using F(1301) as an example, the compact table of Fibonacci results at the Kelly site indicates that F(1301) = p*q*r*c where p=6400921, q=14225131397, r=100794731109596201, and c is a 238-digit unfactored composite number. The complete factorization of every Fibonacci number up to F(1000) is explicitly given elsewhere on the site, and those results allow quick verification that a(n) <= 900 for all n in [0..34], so 1301 cannot be a term unless F(1301) has at least 35 distinct prime factors, which would require c to have at least 32 distinct prime factors, at least one of which would have to be less than ceiling(c^(1/32)) = 26570323, but trial division of c by every prime less than 26570323 shows that c has no prime factors that small. Thus, while A022307(1301) is unknown, it is certain that 1301 is not a term in this sequence. Similarly, making use of known factors, it can be proved that F(n) cannot have 44 or more distinct prime factors for any n < 1320, so since F(1320) has exactly 44 distinct prime factors, it is established that a(44) = 1320. (End)
a(47) >= 2835, a(48..68) = (2040, 1800, 2736, 2730, 1890, 1980, 2520, 2280, 2100, 2160, 2640, 3300, 3060, 3150, 2520, 3120, 3696, 3240, 3990, 3360, 3420), a(69) >= 4400, a(75) = 4320, a(77) = 4200, a(79) = 3780. - Max Alekseyev, Feb 03 2025

Examples

			n=9: F(80) = 23416728348467685 = 3 * 5 * 7 * 11 * 41 * 47 * 1601 * 2161 * 3041.
n=25: F(690) = 2^3 * 5 * 11 * 31 * 61 * 137 * 139 * 461 * 691 * 829 * 1151 * 1381 * 4831 * 5981 * 18077 * 28657 * 186301 * 324301 * 686551 * 1485571 * 4641631 * 117169733521 * 2441738887963981 * 3490125311294161 * 25013864044961447973152814604981 is the smallest Fibonacci number with exactly 25 distinct prime factors.
		

Crossrefs

Programs

  • Mathematica
    First /@ SortBy[#, Last] &@ Map[First@ # &, Values@ GroupBy[#, Last]] &@ Table[{n - Boole[n == 2], #, PrimeNu@ #} &@ Fibonacci@ n, {n, 2, 300}] (* Michael De Vlieger, Feb 18 2017, Version 10 *)
    Module[{ff=Table[{n,PrimeNu[Fibonacci[n]]},{n,1400}]},Table[ SelectFirst[ ff,#[[2]]==k&],{k,0,40}]][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 28 2018 *)
  • PARI
    my(o=[],s); print1(1); for(n=1,20, s=0; until( o[s]==n, #o
    				

Formula

a(n) = min (k : A022307(k) = n).

Extensions

Corrected by Shyam Sunder Gupta, Jul 20 2002
Edited by M. F. Hasler, Nov 01 2012
a(35)-a(40), a(42), a(44) computed based on Kelly's data in A022307 by Jon E. Schoenfield, Dec 28 2016
a(41), a(43), a(45)-a(46) from Max Alekseyev, Feb 03 2025

A060385 Largest prime factor of n-th Fibonacci number.

Original entry on oeis.org

2, 3, 5, 2, 13, 7, 17, 11, 89, 3, 233, 29, 61, 47, 1597, 19, 113, 41, 421, 199, 28657, 23, 3001, 521, 109, 281, 514229, 61, 2417, 2207, 19801, 3571, 141961, 107, 2221, 9349, 135721, 2161, 59369, 421, 433494437, 307, 109441, 28657, 2971215073, 1103
Offset: 3

Views

Author

Labos Elemer, Apr 03 2001

Keywords

Comments

For n > 12, Fibonacci(n) is divisible by a primitive prime factor (one not dividing Fibonacci(1), ..., Fibonacci(n-1)). But all primes up to n-2 divide smaller Fibonacci numbers, see A001602, so a(n) >= n-1 for n > 12. This strengthens a more general theorem of Bravo and Luca. - Charles R Greathouse IV, Feb 01 2013

Examples

			F(82) = 2789 * 59369 * 370248451, so a(82) = 370248451.
		

Crossrefs

Programs

Formula

a(n) >= n - 1 for n > 12, see comments. It is not hard to show that a(n) > 1000 for n > 88. Similarly a(n) > 20641 for n > 120. - Charles R Greathouse IV, Feb 01 2013

A060383 a(1) = a(2) = 1; for n >2, a(n) = smallest prime factor of n-th Fibonacci number.

Original entry on oeis.org

1, 1, 2, 3, 5, 2, 13, 3, 2, 5, 89, 2, 233, 13, 2, 3, 1597, 2, 37, 3, 2, 89, 28657, 2, 5, 233, 2, 3, 514229, 2, 557, 3, 2, 1597, 5, 2, 73, 37, 2, 3, 2789, 2, 433494437, 3, 2, 139, 2971215073, 2, 13, 5, 2, 3, 953, 2, 5, 3, 2, 59, 353, 2, 4513, 557, 2, 3, 5, 2, 269, 3, 2, 5
Offset: 1

Views

Author

Labos Elemer, Apr 03 2001

Keywords

Examples

			For n=82: F(82) = 2789*59369*370248451, so a(82)=2789.
		

Crossrefs

Programs

  • Magma
    [1,1] cat [Minimum(PrimeDivisors(Fibonacci(n))): n in [3..70]]; // Vincenzo Librandi, Dec 25 2016
  • Mathematica
    f[n_] := (FactorInteger@ Fibonacci@ n)[[1,1]]; Array[f, 70] (* Robert G. Wilson v, Jul 07 2007 *)
  • PARI
    a(n) = if ((f=fibonacci(n))==1, 1, factor(f)[1,1]); \\ Michel Marcus, Nov 15 2014
    

Formula

a(n) = A020639(A000045(n)). - Michel Marcus, Nov 15 2014

Extensions

Better definition from Omar E. Pol, Apr 25 2008

A303218 A(n,k) is the n-th Fibonacci number with exactly k distinct prime factors; square array A(n,k), n>=1, k>=1, read by antidiagonals.

Original entry on oeis.org

2, 21, 3, 610, 34, 5, 6765, 987, 55, 8, 832040, 46368, 2584, 144, 13, 102334155, 14930352, 196418, 10946, 377, 89, 190392490709135, 4807526976, 267914296, 317811, 3524578, 4181, 233, 1548008755920, 37889062373143906, 86267571272, 701408733, 2178309, 9227465, 17711, 1597
Offset: 1

Views

Author

Alois P. Heinz, Apr 19 2018

Keywords

Examples

			Square array A(n,k) begins:
   2,   21,     610,        6765,      832040,        102334155, ...
   3,   34,     987,       46368,    14930352,       4807526976, ...
   5,   55,    2584,      196418,   267914296,      86267571272, ...
   8,  144,   10946,      317811,   701408733,     225851433717, ...
  13,  377, 3524578,     2178309,  1134903170,   10610209857723, ...
  89, 4181, 9227465, 32951280099, 12586269025, 8944394323791464, ...
		

Crossrefs

Column k=3 gives A137563.
Row n=1 gives: A060319.

Programs

  • Maple
    F:= combinat[fibonacci]: with(numtheory):
    A:= proc() local h, p, q; p, q:= proc() [] end, 2;
          proc(n, k)
            while nops(p(k))
    				
  • Mathematica
    nmax = 12(*rows*);
    maxIndex = 200; (* increase if message "part does not exist" *)
    nu[n_] := nu[n] = PrimeNu[Fibonacci[n]];
    col[k_] := Select[Range[maxIndex], nu[#] == k &];
    T = Array[col, nmax];
    A[n_, k_] := Fibonacci[T[[k, n]]];
    Table[A[n-k+1, k], {n, 1, nmax}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Feb 05 2021 *)

Formula

A(n,k) = A000045(A303217(n,k)).
A001221(A(n,k)) = k.

A359848 a(n) is the smallest tribonacci number (A000073) with exactly n distinct prime factors.

Original entry on oeis.org

1, 2, 24, 504, 35890, 8646064, 1697490356184, 120879712950776, 98079530178586034536500564, 748829299860308729347600, 119816209721856219780831547518850, 15418262617564622254988364568360573618470100684551892712710640455037970
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 15 2023

Keywords

Examples

			a(4) = 35890, because 35890 is a tribonacci number with 4 distinct prime factors {2, 5, 37, 97} and this is the smallest such number.
		

Crossrefs

Extensions

a(11) from Daniel Suteu, Jan 17 2023

A359849 a(n) is the smallest tetranacci number (A000078) with exactly n distinct prime factors.

Original entry on oeis.org

1, 2, 15, 1490, 39648, 28074040, 100808458960497, 9966792788887776, 4997150614173857218560, 1835682610171974487231869, 889487735339682550112673527109223032, 52499930084496170026238596234557616056408988199026780675759699719704592
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 15 2023

Keywords

Examples

			a(4) = 39648, because 39648 is a tetranacci number with 4 distinct prime factors {2, 3, 7, 59} and this is the smallest such number.
		

Crossrefs

Formula

a(n) = A000078(A359851(n)). - Daniel Suteu, Jan 18 2023

Extensions

a(11) from Daniel Suteu, Jan 18 2023

A359960 Smallest Niven (or Harshad) number (A005349) with exactly n distinct prime factors.

Original entry on oeis.org

1, 2, 6, 30, 210, 2310, 30030, 690690, 14804790, 223092870, 8254436190, 200560490130, 8222980095330, 304250263527210, 13082761331670030, 614889782588491410, 32589158477190044730, 1987938667108592728530, 117288381359406970983270, 7858321551080267055879090
Offset: 0

Views

Author

Bernard Schott, Jan 20 2023

Keywords

Comments

a(11) = 200560490130; a(13) = 304250263527210.
a(n) >= A002110(n) = prime(n)#.
Many terms are primorial numbers, see A360011.

Examples

			2310 = 2*3*5*7*11 is the smallest integer with 5 prime factors because it is a primorial number, as 2310 / (2+3+1+0) = 385, 2310 is a Niven number: a(5) = 2310.
		

Crossrefs

Similar: A060319 (Fibonacci), A083002 (oblong), A359961 (Zuckerman).

Programs

  • PARI
    a(n) = my(k=1); while ((k % sumdigits(k)) || (omega(k) != n), k++); k; \\ Michel Marcus, Jan 20 2023
    
  • PARI
    omega_niven(A, B, n) = A=max(A, vecprod(primes(n))); (f(m, p, j) = my(list=List()); forprime(q=p, sqrtnint(B\m, j), my(v=m*q, r=nextprime(q+1)); while(v <= B, if(j==1, if(v>=A && v%sumdigits(v) == 0, listput(list, v)), if(v*r <= B, list=concat(list, f(v, r, j-1)))); v *= q)); list); vecsort(Vec(f(1, 2, n)));
    a(n) = if(n==0, return(1)); my(x=vecprod(primes(n)), y=2*x); while(1, my(v=omega_niven(x, y, n)); if(#v >= 1, return(v[1])); x=y+1; y=2*x); \\ Daniel Suteu, Jan 22 2023

Extensions

a(8)-a(9) from Michel Marcus, Jan 20 2023
a(10)-a(19) from Daniel Suteu, Jan 22 2023

A229490 The smallest Lucas number having exactly n distinct prime factors.

Original entry on oeis.org

1, 2, 18, 322, 1860498, 599074578, 2537720636, 4721424167835364, 215002084978043708894524818, 8784200221406821330636, 3739702405897758836585154759070350989, 16342986943522226847837781364
Offset: 0

Views

Author

T. D. Noe, Oct 28 2013

Keywords

Crossrefs

Cf. A000032 (Lucas numbers).
Cf. A060319 (corresponding sequence for Fibonacci numbers).
Cf. A229491 (indices of these Lucas numbers).

A359852 a(n) is the smallest Fibonacci n-step number with exactly n distinct prime factors.

Original entry on oeis.org

21, 504, 39648, 6930, 12669125245488, 471771076278370, 32818036405994618064, 71577732779401085355729600, 204945946670840805166309694624676331385919836360545974559162291811394735721440
Offset: 2

Views

Author

Ilya Gutkovskiy, Jan 15 2023

Keywords

Examples

			a(3) = 504, because 504 is a tribonacci number with 3 distinct prime factors {2, 3, 7} and this is the smallest such number.
		

Crossrefs

Programs

  • PARI
    a(n) = my(v=vector(n+1), x=1, y=n+1); v[1]=v[y]=1; while(omega(v[x])!=n, y=x; x=x%(n+1)+1; v[x]=2*v[y]-v[x]); v[x]; \\ Jinyuan Wang, Jan 16 2023

Extensions

a(10) from Jinyuan Wang, Jan 16 2023
Showing 1-10 of 13 results. Next