cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 25 results. Next

A154406 Larger twin primes in A061237.

Original entry on oeis.org

19, 73, 109, 181, 199, 271, 433, 523, 811, 829, 883, 1063, 1153, 1279, 1621, 1873, 1999, 2089, 2143, 2269, 2341, 2593, 2791, 2971, 3169, 3259, 3331, 3529, 3583, 3673, 3853, 4051, 4159, 4231, 4339, 4483, 4519, 4789, 4933, 4969, 5023, 5419, 5653, 5743
Offset: 1

Views

Author

Zak Seidov, Jan 09 2009

Keywords

Comments

All primes == 1 mod 18.

Crossrefs

Intersection of A006512 and A061237.

Programs

  • PARI
    lista(nn) = forprime(p=2, nn, if (isprime(p-2) && ((p % 9) == 1), print1(p, ", "))); \\ Michel Marcus, Nov 12 2017

A007528 Primes of the form 6k-1.

Original entry on oeis.org

5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233, 239, 251, 257, 263, 269, 281, 293, 311, 317, 347, 353, 359, 383, 389, 401, 419, 431, 443, 449, 461, 467, 479, 491, 503, 509, 521, 557, 563, 569, 587
Offset: 1

Views

Author

Keywords

Comments

For values of k see A024898.
Also primes p such that p^q - 2 is not prime where q is an odd prime. These numbers cannot be prime because the binomial p^q = (6k-1)^q expands to 6h-1 some h. Then p^q-2 = 6h-1-2 is divisible by 3 thus not prime. - Cino Hilliard, Nov 12 2008
a(n) = A211890(3,n-1) for n <= 4. - Reinhard Zumkeller, Jul 13 2012
There exists a polygonal number P_s(3) = 3s - 3 = a(n) + 1. These are the only primes p with P_s(k) = p + 1, s >= 3, k >= 3, since P_s(k) - 1 is composite for k > 3. - Ralf Steiner, May 17 2018
From Bernard Schott, Feb 14 2019: (Start)
A theorem due to Andrzej Mąkowski: every integer greater than 161 is the sum of distinct primes of the form 6k-1. Examples: 162 = 5 + 11 + 17 + 23 + 47 + 59; 163 = 17 + 23 + 29 + 41 + 53. (See Sierpiński and David Wells.)
{2,3} Union A002476 Union {this sequence} = A000040.
Except for 2 and 3, all Sophie Germain primes are of the form 6k-1.
Except for 3, all the lesser of twin primes are also of the form 6k-1.
Dirichlet's theorem on arithmetic progressions states that this sequence is infinite. (End)
For all elements of this sequence p=6*k-1, there are no (x,y) positive integers such that k=6*x*y-x+y. - Pedro Caceres, Apr 06 2019

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • A. Mąkowski, Partitions into unequal primes, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 8 (1960), 125-126.
  • Wacław Sierpiński, Elementary Theory of Numbers, p. 144, Warsaw, 1964.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, Revised edition, 1997, p. 127.

Crossrefs

Intersection of A016969 and A000040.
Prime sequences A# (k,r) of the form k*n+r with 0 <= r <= k-1 (i.e., primes == r (mod k), or primes p with p mod k = r) and gcd(r,k)=1: A000040 (1,0), A065091 (2,1), A002476 (3,1), A003627 (3,2), A002144 (4,1), A002145 (4,3), A030430 (5,1), A045380 (5,2), A030431 (5,3), A030433 (5,4), A002476 (6,1), this sequence (6,5), A140444 (7,1), A045392 (7,2), A045437 (7,3), A045471 (7,4), A045458 (7,5), A045473 (7,6), A007519 (8,1), A007520 (8,3), A007521 (8,5), A007522 (8,7), A061237 (9,1), A061238 (9,2), A061239 (9,4), A061240 (9,5), A061241 (9,7), A061242 (9,8), A030430 (10,1), A030431 (10,3), A030432 (10,7), A030433 (10,9), A141849 (11,1), A090187 (11,2), A141850 (11,3), A141851 (11,4), A141852 (11,5), A141853 (11,6), A141854 (11,7), A141855 (11,8), A141856 (11,9), A141857 (11,10), A068228 (12,1), A040117 (12,5), A068229 (12,7), A068231 (12,11).
Cf. A034694 (smallest prime == 1 (mod n)).
Cf. A038700 (smallest prime == n-1 (mod n)).
Cf. A038026 (largest possible value of smallest prime == r (mod n)).
Cf. A001359 (lesser of twin primes), A005384 (Sophie Germain primes).

Programs

  • GAP
    Filtered(List([1..100],n->6*n-1),IsPrime); # Muniru A Asiru, May 19 2018
  • Haskell
    a007528 n = a007528_list !! (n-1)
    a007528_list = [x | k <- [0..], let x = 6 * k + 5, a010051' x == 1]
    -- Reinhard Zumkeller, Jul 13 2012
    
  • Maple
    select(isprime,[seq(6*n-1,n=1..100)]); # Muniru A Asiru, May 19 2018
  • Mathematica
    Select[6 Range[100]-1,PrimeQ]  (* Harvey P. Dale, Feb 14 2011 *)
  • PARI
    forprime(p=2, 1e3, if(p%6==5, print1(p, ", "))) \\ Charles R Greathouse IV, Jul 15 2011
    
  • PARI
    forprimestep(p=5,1000,6, print1(p", ")) \\ Charles R Greathouse IV, Mar 03 2025
    

Formula

A003627 \ {2}. - R. J. Mathar, Oct 28 2008
Conjecture: Product_{n >= 1} ((a(n) - 1) / (a(n) + 1)) * ((A002476(n) + 1) / (A002476(n) - 1)) = 3/4. - Dimitris Valianatos, Feb 11 2020
From Vaclav Kotesovec, May 02 2020: (Start)
Product_{k>=1} (1 - 1/a(k)^2) = 9*A175646/Pi^2 = 1/1.060548293.... =4/(3*A333240).
Product_{k>=1} (1 + 1/a(k)^2) = A334482.
Product_{k>=1} (1 - 1/a(k)^3) = A334480.
Product_{k>=1} (1 + 1/a(k)^3) = A334479. (End)
Legendre symbol (-3, a(n)) = -1 and (-3, A002476(n)) = +1, for n >= 1. For prime 3 one sets (-3, 3) = 0. - Wolfdieter Lang, Mar 03 2021

A038194 Iterated sum-of-digits of n-th prime; or digital root of n-th prime; or n-th prime modulo 9.

Original entry on oeis.org

2, 3, 5, 7, 2, 4, 8, 1, 5, 2, 4, 1, 5, 7, 2, 8, 5, 7, 4, 8, 1, 7, 2, 8, 7, 2, 4, 8, 1, 5, 1, 5, 2, 4, 5, 7, 4, 1, 5, 2, 8, 1, 2, 4, 8, 1, 4, 7, 2, 4, 8, 5, 7, 8, 5, 2, 8, 1, 7, 2, 4, 5, 1, 5, 7, 2, 7, 4, 5, 7, 2, 8, 7, 4, 1, 5, 2, 1, 5, 4, 5, 7, 8, 1, 7, 2, 8
Offset: 1

Views

Author

Den Roussel (DenRoussel(AT)webtv.net) and Clark Kimberling

Keywords

Comments

Integers with iterated sum-of-digits 3, 6 or 9 are divisible by 3, so 3 is the only prime with iterated sum-of-digits 3 and there are no primes with iterated sum-of-digits 6 or 9.
The remaining values are very evenly distributed: these are the number of appearances in the first 1007933 primes: 1:167878; 2:168079; 4:167984; 5:168027; 7:167906; 8:168058. - Carmine Suriano, Jun 22 2015
Asymptotically, the ratios (number of primes <= n and == i mod 9)/(number of primes <= n and == j mod 9) go to 1 as n -> infinity for all i,j in {1,2,4,5,7,8} by the Prime Number Theorem for Arithmetic Progressions. For more detailed analysis, see the Granville-Martin link. - Robert Israel, Jul 08 2015

Examples

			Prime(5) = 11, 1 + 1 = 2 hence a(5) = 2.
a(297)=7 because the 297th prime is 1951 and 1+9+5+1 = 16 -> 1+6 = 7.
		

Crossrefs

Programs

Formula

a(n) = A010888(A000040(n)).
Sum_k={1..n} a(k) ~ (9/2)*n. - Amiram Eldar, Dec 11 2024

Extensions

Edited by Klaus Brockhaus, Feb 16 2002
Edited at the suggestion of R. J. Mathar by N. J. A. Sloane, May 14 2008

A061242 Primes of the form 9*k - 1.

Original entry on oeis.org

17, 53, 71, 89, 107, 179, 197, 233, 251, 269, 359, 431, 449, 467, 503, 521, 557, 593, 647, 683, 701, 719, 773, 809, 827, 863, 881, 953, 971, 1061, 1097, 1151, 1187, 1223, 1259, 1277, 1367, 1439, 1493, 1511, 1583, 1601, 1619, 1637, 1709, 1871, 1889, 1907
Offset: 1

Views

Author

Amarnath Murthy, Apr 23 2001

Keywords

Comments

Or, primes of the form 18k - 1. Corresponding values of k are in A138918. - Zak Seidov, Apr 03 2008
From Doug Bell, Mar 23 2009: (Start)
Conjecture: if a(n) = 9x - 1, the integer formed by the repeating digits in the decimal fraction x/a(n) is the smallest integer such that rotating the digits to the left produces a number which is (x+1)/x times larger.
Example: x = 2, a(n) = 17: 2/17 = 0.1176470588235294... repeating with a cycle of 16.
1176470588235294 * 3/2 = 1764705882352941, which is 1176470588235294 rotated to the left.
An additional conjecture is that the values of x from this sequence are the only values where rotating an integer one to the left produces a value (x+1)/x times as large. (End)
The last conjecture is false. For example, for x = 3 we have 230769*(4/3) = 307692, but 9*3-1 = 26 is not in the sequence. - Giovanni Resta, Jul 28 2015
Conjecture: Primes p such that ((x+1)^9-1)/x has 4 irreducible factors of degree 2 over GF(p). - Federico Provvedi, Jun 27 2018

Crossrefs

Cf. A061237, A061238, A061239, A061240, A061241 (p mod 9 = 1, 2, 4, 5 and 7), A138918 (18n - 1 is prime), A258663 (9n - 1 is prime).
Can be partitioned in disjoint subsequences A062343 (primes with sum of digits s = 8), A106758 (s = 17), A106764 (s = 26), A106770 (s = 35), A106776 (s = 44), A106782 (s = 53), A107617 (s = 62), etc.

Programs

  • Magma
    [a: n in [0..250] | IsPrime(a) where a is 9*n - 1 ]; // Vincenzo Librandi, Jun 07 2015
    
  • Maple
    select(isprime, [seq(18*i-1,i=1..1000)]); # Robert Israel, Sep 03 2014
  • Mathematica
    Select[ Range[ 2500 ], PrimeQ[ # ] && Mod[ #, 9 ] == 8 & ]
    Select[9*Range[300] - 1, PrimeQ]
  • PARI
    select( {is(n)=n%9==8&&isprime(n)}, primes([1,2000])) \\ M. F. Hasler, Mar 10 2022
  • Python
    from sympy import prime
    A061242 = [p for p in (prime(n) for n in range(1,10**3)) if not (p+1) % 18]
    # Chai Wah Wu, Sep 02 2014
    

Formula

A010888(a(n)) = 8. - Reinhard Zumkeller, Feb 25 2005
a(n) ~ 6n log n. - Charles R Greathouse IV, May 14 2025

Extensions

More terms from Robert G. Wilson v, May 10 2001
Edited by N. J. A. Sloane at the suggestion of R. J. Mathar, Apr 30 2008
Edited by M. F. Hasler, Mar 10 2022

A061238 Prime numbers == 2 (mod 9).

Original entry on oeis.org

2, 11, 29, 47, 83, 101, 137, 173, 191, 227, 263, 281, 317, 353, 389, 443, 461, 479, 569, 587, 641, 659, 677, 821, 839, 857, 911, 929, 947, 983, 1019, 1091, 1109, 1163, 1181, 1217, 1289, 1307, 1361, 1433, 1451, 1487, 1523, 1559, 1613, 1667, 1721, 1811, 1847
Offset: 1

Views

Author

Amarnath Murthy, Apr 23 2001

Keywords

Comments

A010888(a(n)) = 2. - Reinhard Zumkeller, Feb 25 2005
Except for the first term "2", all current prime numbers are of the form: 18*n-7. - Vladimir Joseph Stephan Orlovsky, Jul 13 2011

Crossrefs

Programs

Formula

a(n) ~ 6n log n. - Charles R Greathouse IV, May 14 2025

Extensions

More terms from Robert G. Wilson v, May 10 2001

A061240 Prime numbers == 5 (mod 9).

Original entry on oeis.org

5, 23, 41, 59, 113, 131, 149, 167, 239, 257, 293, 311, 347, 383, 401, 419, 491, 509, 563, 599, 617, 653, 743, 761, 797, 887, 941, 977, 1013, 1031, 1049, 1103, 1193, 1229, 1283, 1301, 1319, 1373, 1409, 1427, 1481, 1499, 1553, 1571, 1607, 1697, 1733, 1787
Offset: 1

Views

Author

Amarnath Murthy, Apr 23 2001

Keywords

Comments

A010888(a(n)) = 5. - Reinhard Zumkeller, Feb 25 2005

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(2000) | p mod 9 in {5} ]; // Vincenzo Librandi, Dec 25 2010
    
  • Mathematica
    Select[ Range[ 2500 ], PrimeQ[ # ] && Mod[ #, 9 ] == 5 & ]
    Select[Prime[Range[300]],Mod[#,9]==5&] (* Harvey P. Dale, Oct 13 2017 *)
  • PARI
    select(p->p%9==5,primes(1000)) \\ Charles R Greathouse IV, Sep 26 2012

Formula

a(n) ~ 6n log n. - Charles R Greathouse IV, May 14 2025

Extensions

More terms from Robert G. Wilson v, May 10 2001

A107579 Primes with digit sum 10.

Original entry on oeis.org

19, 37, 73, 109, 127, 163, 181, 271, 307, 433, 523, 541, 613, 631, 811, 1009, 1063, 1117, 1153, 1171, 1423, 1531, 1621, 1801, 2017, 2053, 2143, 2161, 2251, 2341, 2503, 2521, 3061, 3313, 3331, 3511, 4051, 4231, 5023, 5113, 6121, 6211, 6301, 8011, 8101
Offset: 1

Views

Author

Zak Seidov, May 16 2005

Keywords

Comments

Subset of A061237 and A117674.

Crossrefs

Cf. A000040 (primes), A007953 (sum of digits), A052224 (digit sum = 10).
Cf. A061237 (sum of digits == 1 (mod 9)).
Subsequence of A062340 (primes with digit sum divisible by 5).
Cf. A062339 (same for digit sum s = 4), A062341 (s = 5), A062343 (s = 8), A106754 (s = 11), and others listed in A244918 (s = 68).

Programs

  • Magma
    [p: p in PrimesUpTo(10000) | &+Intseq(p) eq 10]; // Vincenzo Librandi, Jul 08 2014
    
  • Maple
    a:=proc(n) local nn: nn:=convert(n,base,10): if isprime(n)=true and add(nn[j], j=1..nops(nn))=10 then n else end if end proc: seq(a(n),n=1..10^4); # Emeric Deutsch, Mar 06 2008
  • Mathematica
    Select[Prime[Range[100000]], Total[IntegerDigits[#]]==10 &] (* Vincenzo Librandi, Jul 08 2014 *)
  • PARI
    forprime(p=19,8101,if(10==sumdigits(p),print(p","))) \\ Zak Seidov, Oct 08 2016
    
  • PARI
    (A107579_nxt(p)=until(isprime(p=A228915(p)),); p); A107579_first(N=100)=vector(N, i, p=if(i>1, A107579_nxt(p), 19)) \\ M. F. Hasler, Mar 15 2022
    
  • Python
    from itertools import count, islice
    from sympy import isprime
    from sympy.utilities.iterables import multiset_permutations
    def agen(b=10, sod=10): # generator for any base, sum-of-digits
        if 0 <= sod < b:
            yield sod
        nzdigs = [i for i in range(1, b) if i <= sod]
        nzmultiset = []
        for d in range(1, b):
            nzmultiset += [d]*(sod//d)
        for d in count(2):
            fullmultiset = [0]*(d-1-(sod-1)//(b-1)) + nzmultiset
            for firstdig in nzdigs:
                target_sum, restmultiset = sod - int(firstdig), fullmultiset[:]
                restmultiset.remove(firstdig)
                for p in multiset_permutations(restmultiset, d-1):
                    if sum(p) == target_sum:
                        t = int("".join(map(str, [firstdig]+p)), b)
                        if isprime(t):
                            yield t
                        if p[0] == target_sum:
                            break
    print(list(islice(agen(), 45))) # Michael S. Branicky, Mar 10 2022
    
  • Python
    from sympy import isprime
    def A107579(p=19):
        "Return a generator of the sequence of all primes >= p with the same digit sum as p."
        while True:
            if isprime(p): yield p
            p = A228915(p) # skip to next larger integer with the same digit sum
    a=A107579(); [next(a) for  in range(50)] # _M. F. Hasler, Mar 16 2022

Formula

Intersection of A000040 (primes) and A052224 (digit sum = 10). - M. F. Hasler, Mar 09 2022

Extensions

Edited by N. J. A. Sloane, Feb 20 2009 at the suggestion of Pacha Nambi

A061241 Prime numbers == 7 (mod 9).

Original entry on oeis.org

7, 43, 61, 79, 97, 151, 223, 241, 277, 313, 331, 349, 367, 421, 439, 457, 547, 601, 619, 673, 691, 709, 727, 853, 907, 997, 1033, 1051, 1069, 1087, 1123, 1213, 1231, 1249, 1303, 1321, 1429, 1447, 1483, 1609, 1627, 1663, 1699, 1753, 1789, 1861, 1879, 1933
Offset: 1

Views

Author

Amarnath Murthy, Apr 23 2001

Keywords

Comments

A010888(a(n)) = 7. - Reinhard Zumkeller, Feb 25 2005

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(2000) | p mod 9 eq 7]; // Vincenzo Librandi, Dec 25 2010
    
  • Maple
    select(isprime,[seq(9*i+7,i=0..10^5)]); # Robert Israel, Apr 20 2014
  • Mathematica
    Select[Range[2500], PrimeQ[#] && Mod[#, 9] == 7 &]
    Select[Prime[Range[300]], Mod[#, 9] == 7 & ] (* Harvey P. Dale, Apr 30 2011 *)
  • PARI
    select(n->n%9==7, primes(400)) \\ Charles R Greathouse IV, May 27 2014

Formula

a(n) ~ 6n log n. - Charles R Greathouse IV, May 14 2025

Extensions

More terms from Robert G. Wilson v, May 10 2001

A141849 Primes congruent to 1 mod 11.

Original entry on oeis.org

23, 67, 89, 199, 331, 353, 397, 419, 463, 617, 661, 683, 727, 859, 881, 947, 991, 1013, 1123, 1277, 1321, 1409, 1453, 1607, 1783, 1871, 2003, 2069, 2113, 2179, 2267, 2311, 2333, 2377, 2399, 2531, 2663, 2707, 2729, 2861, 2927, 2971, 3037, 3169, 3191, 3257
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Comments

Conjecture: Also primes p such that ((x+1)^11-1)/x has 10 distinct irreducible factors of degree 1 over GF(p). - Federico Provvedi, Apr 17 2018
Primes congruent to 1 mod 22. - Chai Wah Wu, Apr 28 2025

Crossrefs

Prime sequences A# (k,r) of the form k*n+r with 0 <= r <= k-1 (i.e., primes == r (mod k), or primes p with p mod k = r) and gcd(r,k)=1: A000040 (1,0), A065091 (2,1), A002476 (3,1), A003627 (3,2), A002144 (4,1), A002145 (4,3), A030430 (5,1), A045380 (5,2), A030431 (5,3), A030433 (5,4), A002476 (6,1), A007528 (6,5), A140444 (7,1), A045392 (7,2), A045437 (7,3), A045471 (7,4), A045458 (7,5), A045473 (7,6), A007519 (8,1), A007520 (8,3), A007521 (8,5), A007522 (8,7), A061237 (9,1), A061238 (9,2), A061239 (9,4), A061240 (9,5), A061241 (9,7), A061242 (9,8), A030430 (10,1), A030431 (10,3), A030432 (10,7), A030433 (10,9), this sequence (11,1), A090187 (11,2), A141850 (11,3), A141851 (11,4), A141852 (11,5), A141853 (11,6), A141854 (11,7), A141855 (11,8), A141856 (11,9), A141857 (11,10), A068228 (12,1), A040117 (12,5), A068229 (12,7), A068231 (12,11).
Cf. A034694 (smallest prime == 1 (mod n)).
Cf. A038700 (smallest prime == n-1 (mod n)).
Cf. A038026 (largest possible value of smallest prime == r (mod n)).

Programs

Formula

a(n) ~ 10n log n. - Charles R Greathouse IV, Jul 02 2016

A061239 Prime numbers == 4 (mod 9).

Original entry on oeis.org

13, 31, 67, 103, 139, 157, 193, 211, 229, 283, 337, 373, 409, 463, 499, 571, 607, 643, 661, 733, 751, 769, 787, 823, 859, 877, 967, 1021, 1039, 1093, 1129, 1201, 1237, 1291, 1327, 1381, 1399, 1453, 1471, 1489, 1543, 1579, 1597, 1669, 1723, 1741, 1759
Offset: 1

Views

Author

Amarnath Murthy, Apr 23 2001

Keywords

Comments

A010888(a(n)) = 4. - Reinhard Zumkeller, Feb 25 2005

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(2000) | p mod 9 in {4} ]; // Vincenzo Librandi, Dec 25 2010
    
  • Mathematica
    Select[ Range[ 2000 ], PrimeQ[ # ] && Mod[ #, 9 ] == 4 & ]
    Select[Prime[Range[300]],Mod[#,9]==4&] (* Harvey P. Dale, Aug 20 2015 *)
  • PARI
    select(n->n%9==4, primes(400)) \\ Charles R Greathouse IV, May 27 2014

Formula

a(n) ~ 6n log n. - Charles R Greathouse IV, May 14 2025

Extensions

More terms from Robert G. Wilson v, May 10 2001
Showing 1-10 of 25 results. Next