A090389 Duplicate of A061238.
2, 11, 29, 47, 83, 101, 137, 173, 191, 227, 263, 281, 317, 353, 389, 443, 461, 479, 569, 587, 641, 659, 677, 821, 839, 857, 911, 929, 947, 983, 1019, 1091, 1109, 1163, 1181, 1217, 1289
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Filtered(List([1..100],n->6*n-1),IsPrime); # Muniru A Asiru, May 19 2018
a007528 n = a007528_list !! (n-1) a007528_list = [x | k <- [0..], let x = 6 * k + 5, a010051' x == 1] -- Reinhard Zumkeller, Jul 13 2012
select(isprime,[seq(6*n-1,n=1..100)]); # Muniru A Asiru, May 19 2018
Select[6 Range[100]-1,PrimeQ] (* Harvey P. Dale, Feb 14 2011 *)
forprime(p=2, 1e3, if(p%6==5, print1(p, ", "))) \\ Charles R Greathouse IV, Jul 15 2011
forprimestep(p=5,1000,6, print1(p", ")) \\ Charles R Greathouse IV, Mar 03 2025
[ p: p in PrimesUpTo(2000) | p mod 9 in {1} ]; // Vincenzo Librandi, Dec 25 2010
Select[ Range[ 2000 ], PrimeQ[ # ] && Mod[ #, 9 ] == 1 & ] Select[Prime[Range[350]],Mod[#,9]==1&] (* Harvey P. Dale, Jan 06 2013 *)
isok(p) = { isprime(p) && p%9 == 1 } \\ Harry J. Smith, Jul 19 2009
[a: n in [0..250] | IsPrime(a) where a is 9*n - 1 ]; // Vincenzo Librandi, Jun 07 2015
select(isprime, [seq(18*i-1,i=1..1000)]); # Robert Israel, Sep 03 2014
Select[ Range[ 2500 ], PrimeQ[ # ] && Mod[ #, 9 ] == 8 & ] Select[9*Range[300] - 1, PrimeQ]
select( {is(n)=n%9==8&&isprime(n)}, primes([1,2000])) \\ M. F. Hasler, Mar 10 2022
from sympy import prime A061242 = [p for p in (prime(n) for n in range(1,10**3)) if not (p+1) % 18] # Chai Wah Wu, Sep 02 2014
Filtered([1..4000],n->n mod 11=1 and IsPrime(n)); # Muniru A Asiru, Apr 19 2018
[ p: p in PrimesUpTo(5000) | p mod 11 eq 1 ]; // Vincenzo Librandi, Apr 19 2011
a:=select(n->isprime(n) and modp(n,11)=1,[$1..4000]); # Muniru A Asiru, Apr 19 2018
Select[Range[1,10000,11],PrimeQ] (* Vladimir Joseph Stephan Orlovsky, May 18 2011 *)
is(n)=isprime(n) && n%11==1 \\ Charles R Greathouse IV, Jul 01 2016
forstep(n=2, 1e3, 2, if(isprime(p=11*n+1), print1(p, ", "))); \\ Altug Alkan, Apr 19 2018
59 is a term because 5+9=14, giving (final) iterated sum 1+4=5 and 5 is prime.
Select[ Range[580], PrimeQ[ # ] && PrimeQ[Mod[ #, 9]] &] Select[Prime[Range[200]],PrimeQ[Mod[#,9]]&] (* Harvey P. Dale, Aug 20 2017 *)
forprime(p=2,997,if(isprime(p%9),print1(p,",")))
from sympy import isprime, primerange; [print(p, end = ', ') for p in primerange(2, 570) if isprime(p%9)] # Ya-Ping Lu, Jan 03 2024
[ p: p in PrimesUpTo(1300) | p mod 18 in {7, 11} ]; // Vincenzo Librandi, Aug 14 2012
Select[Prime[Range[1000]],MemberQ[{7,11},Mod[ #,18]]&] (* Zak Seidov, May 23 2007 *)
[n: n in [1..300] |IsPrime(9*n-7)]; // Vincenzo Librandi, Nov 20 2010
Select[Range[300], PrimeQ[9 # - 7] &] (* Harvey P. Dale, Sep 18 2012 *)
is(n)=isprime(9*n-7) \\ Charles R Greathouse IV, May 22 2017
2 is in this sequence because 2 is prime and 2^2 + 2^2 = 8 is divisible by 2^2. 11 is in this sequence because it is prime and 2^11 + 11^2 = 2169 is divisible by 3^2.
[n: n in [1..265] | IsPrime(n) and not IsSquarefree(2^n + n^2)];
Select[Prime[Range[25]], MoebiusMu[2^# + #^2] == 0 &] (* Alonso del Arte, May 26 2014 *) Select[Range[100], PrimeQ[#] && ! SquareFreeQ[2^# + #^2] &] (* Amiram Eldar, Dec 24 2020 *)
s=[]; forprime(p=2, 300, if(!issquarefree(2^p+p^2), s=concat(s, p); print1(p, ", "))); s \\ Colin Barker, May 22 2014
Comments