cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A090389 Duplicate of A061238.

Original entry on oeis.org

2, 11, 29, 47, 83, 101, 137, 173, 191, 227, 263, 281, 317, 353, 389, 443, 461, 479, 569, 587, 641, 659, 677, 821, 839, 857, 911, 929, 947, 983, 1019, 1091, 1109, 1163, 1181, 1217, 1289
Offset: 1

Views

Author

Keywords

A158908 First differences of A061238.

Original entry on oeis.org

9, 18, 18, 36, 18, 36, 36, 18, 36, 36, 18, 36, 36, 36, 54, 18, 18, 90, 18, 54, 18, 18, 144, 18, 18, 54, 18, 18, 36, 36, 72, 18, 54, 18, 36, 72, 18, 54, 72, 18, 36, 36, 36, 54, 54, 54, 90, 36, 54, 72, 54, 36, 18, 18, 54, 54, 36, 54, 36, 18, 72, 18, 18, 18, 54, 18, 72, 36, 36, 18, 18
Offset: 1

Views

Author

Paul Curtz, Mar 30 2009

Keywords

Comments

Obviously all entries are multiples of 9.
First differences of some the 6 prime modulo classes shown in A061237 to A061241 are also in A158910 and A158955.

Extensions

Edited and extended by R. J. Mathar, Apr 06 2009

A007528 Primes of the form 6k-1.

Original entry on oeis.org

5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233, 239, 251, 257, 263, 269, 281, 293, 311, 317, 347, 353, 359, 383, 389, 401, 419, 431, 443, 449, 461, 467, 479, 491, 503, 509, 521, 557, 563, 569, 587
Offset: 1

Views

Author

Keywords

Comments

For values of k see A024898.
Also primes p such that p^q - 2 is not prime where q is an odd prime. These numbers cannot be prime because the binomial p^q = (6k-1)^q expands to 6h-1 some h. Then p^q-2 = 6h-1-2 is divisible by 3 thus not prime. - Cino Hilliard, Nov 12 2008
a(n) = A211890(3,n-1) for n <= 4. - Reinhard Zumkeller, Jul 13 2012
There exists a polygonal number P_s(3) = 3s - 3 = a(n) + 1. These are the only primes p with P_s(k) = p + 1, s >= 3, k >= 3, since P_s(k) - 1 is composite for k > 3. - Ralf Steiner, May 17 2018
From Bernard Schott, Feb 14 2019: (Start)
A theorem due to Andrzej Mąkowski: every integer greater than 161 is the sum of distinct primes of the form 6k-1. Examples: 162 = 5 + 11 + 17 + 23 + 47 + 59; 163 = 17 + 23 + 29 + 41 + 53. (See Sierpiński and David Wells.)
{2,3} Union A002476 Union {this sequence} = A000040.
Except for 2 and 3, all Sophie Germain primes are of the form 6k-1.
Except for 3, all the lesser of twin primes are also of the form 6k-1.
Dirichlet's theorem on arithmetic progressions states that this sequence is infinite. (End)
For all elements of this sequence p=6*k-1, there are no (x,y) positive integers such that k=6*x*y-x+y. - Pedro Caceres, Apr 06 2019

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • A. Mąkowski, Partitions into unequal primes, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 8 (1960), 125-126.
  • Wacław Sierpiński, Elementary Theory of Numbers, p. 144, Warsaw, 1964.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, Revised edition, 1997, p. 127.

Crossrefs

Intersection of A016969 and A000040.
Prime sequences A# (k,r) of the form k*n+r with 0 <= r <= k-1 (i.e., primes == r (mod k), or primes p with p mod k = r) and gcd(r,k)=1: A000040 (1,0), A065091 (2,1), A002476 (3,1), A003627 (3,2), A002144 (4,1), A002145 (4,3), A030430 (5,1), A045380 (5,2), A030431 (5,3), A030433 (5,4), A002476 (6,1), this sequence (6,5), A140444 (7,1), A045392 (7,2), A045437 (7,3), A045471 (7,4), A045458 (7,5), A045473 (7,6), A007519 (8,1), A007520 (8,3), A007521 (8,5), A007522 (8,7), A061237 (9,1), A061238 (9,2), A061239 (9,4), A061240 (9,5), A061241 (9,7), A061242 (9,8), A030430 (10,1), A030431 (10,3), A030432 (10,7), A030433 (10,9), A141849 (11,1), A090187 (11,2), A141850 (11,3), A141851 (11,4), A141852 (11,5), A141853 (11,6), A141854 (11,7), A141855 (11,8), A141856 (11,9), A141857 (11,10), A068228 (12,1), A040117 (12,5), A068229 (12,7), A068231 (12,11).
Cf. A034694 (smallest prime == 1 (mod n)).
Cf. A038700 (smallest prime == n-1 (mod n)).
Cf. A038026 (largest possible value of smallest prime == r (mod n)).
Cf. A001359 (lesser of twin primes), A005384 (Sophie Germain primes).

Programs

  • GAP
    Filtered(List([1..100],n->6*n-1),IsPrime); # Muniru A Asiru, May 19 2018
  • Haskell
    a007528 n = a007528_list !! (n-1)
    a007528_list = [x | k <- [0..], let x = 6 * k + 5, a010051' x == 1]
    -- Reinhard Zumkeller, Jul 13 2012
    
  • Maple
    select(isprime,[seq(6*n-1,n=1..100)]); # Muniru A Asiru, May 19 2018
  • Mathematica
    Select[6 Range[100]-1,PrimeQ]  (* Harvey P. Dale, Feb 14 2011 *)
  • PARI
    forprime(p=2, 1e3, if(p%6==5, print1(p, ", "))) \\ Charles R Greathouse IV, Jul 15 2011
    
  • PARI
    forprimestep(p=5,1000,6, print1(p", ")) \\ Charles R Greathouse IV, Mar 03 2025
    

Formula

A003627 \ {2}. - R. J. Mathar, Oct 28 2008
Conjecture: Product_{n >= 1} ((a(n) - 1) / (a(n) + 1)) * ((A002476(n) + 1) / (A002476(n) - 1)) = 3/4. - Dimitris Valianatos, Feb 11 2020
From Vaclav Kotesovec, May 02 2020: (Start)
Product_{k>=1} (1 - 1/a(k)^2) = 9*A175646/Pi^2 = 1/1.060548293.... =4/(3*A333240).
Product_{k>=1} (1 + 1/a(k)^2) = A334482.
Product_{k>=1} (1 - 1/a(k)^3) = A334480.
Product_{k>=1} (1 + 1/a(k)^3) = A334479. (End)
Legendre symbol (-3, a(n)) = -1 and (-3, A002476(n)) = +1, for n >= 1. For prime 3 one sets (-3, 3) = 0. - Wolfdieter Lang, Mar 03 2021

A061237 Prime numbers == 1 (mod 9).

Original entry on oeis.org

19, 37, 73, 109, 127, 163, 181, 199, 271, 307, 379, 397, 433, 487, 523, 541, 577, 613, 631, 739, 757, 811, 829, 883, 919, 937, 991, 1009, 1063, 1117, 1153, 1171, 1279, 1297, 1423, 1459, 1531, 1549, 1567, 1621, 1657, 1693, 1747, 1783, 1801, 1873, 1999
Offset: 1

Views

Author

Amarnath Murthy, Apr 23 2001

Keywords

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(2000) | p mod 9 in {1} ]; // Vincenzo Librandi, Dec 25 2010
  • Mathematica
    Select[ Range[ 2000 ], PrimeQ[ # ] && Mod[ #, 9 ] == 1 & ]
    Select[Prime[Range[350]],Mod[#,9]==1&] (* Harvey P. Dale, Jan 06 2013 *)
  • PARI
    isok(p) = { isprime(p) && p%9 == 1 } \\ Harry J. Smith, Jul 19 2009
    

Formula

A010888(a(n)) = 1. - Reinhard Zumkeller, Feb 25 2005
a(n) ~ 6n log n. - Charles R Greathouse IV, May 14 2025

Extensions

More terms from Robert G. Wilson v, May 10 2001

A061242 Primes of the form 9*k - 1.

Original entry on oeis.org

17, 53, 71, 89, 107, 179, 197, 233, 251, 269, 359, 431, 449, 467, 503, 521, 557, 593, 647, 683, 701, 719, 773, 809, 827, 863, 881, 953, 971, 1061, 1097, 1151, 1187, 1223, 1259, 1277, 1367, 1439, 1493, 1511, 1583, 1601, 1619, 1637, 1709, 1871, 1889, 1907
Offset: 1

Views

Author

Amarnath Murthy, Apr 23 2001

Keywords

Comments

Or, primes of the form 18k - 1. Corresponding values of k are in A138918. - Zak Seidov, Apr 03 2008
From Doug Bell, Mar 23 2009: (Start)
Conjecture: if a(n) = 9x - 1, the integer formed by the repeating digits in the decimal fraction x/a(n) is the smallest integer such that rotating the digits to the left produces a number which is (x+1)/x times larger.
Example: x = 2, a(n) = 17: 2/17 = 0.1176470588235294... repeating with a cycle of 16.
1176470588235294 * 3/2 = 1764705882352941, which is 1176470588235294 rotated to the left.
An additional conjecture is that the values of x from this sequence are the only values where rotating an integer one to the left produces a value (x+1)/x times as large. (End)
The last conjecture is false. For example, for x = 3 we have 230769*(4/3) = 307692, but 9*3-1 = 26 is not in the sequence. - Giovanni Resta, Jul 28 2015
Conjecture: Primes p such that ((x+1)^9-1)/x has 4 irreducible factors of degree 2 over GF(p). - Federico Provvedi, Jun 27 2018

Crossrefs

Cf. A061237, A061238, A061239, A061240, A061241 (p mod 9 = 1, 2, 4, 5 and 7), A138918 (18n - 1 is prime), A258663 (9n - 1 is prime).
Can be partitioned in disjoint subsequences A062343 (primes with sum of digits s = 8), A106758 (s = 17), A106764 (s = 26), A106770 (s = 35), A106776 (s = 44), A106782 (s = 53), A107617 (s = 62), etc.

Programs

  • Magma
    [a: n in [0..250] | IsPrime(a) where a is 9*n - 1 ]; // Vincenzo Librandi, Jun 07 2015
    
  • Maple
    select(isprime, [seq(18*i-1,i=1..1000)]); # Robert Israel, Sep 03 2014
  • Mathematica
    Select[ Range[ 2500 ], PrimeQ[ # ] && Mod[ #, 9 ] == 8 & ]
    Select[9*Range[300] - 1, PrimeQ]
  • PARI
    select( {is(n)=n%9==8&&isprime(n)}, primes([1,2000])) \\ M. F. Hasler, Mar 10 2022
  • Python
    from sympy import prime
    A061242 = [p for p in (prime(n) for n in range(1,10**3)) if not (p+1) % 18]
    # Chai Wah Wu, Sep 02 2014
    

Formula

A010888(a(n)) = 8. - Reinhard Zumkeller, Feb 25 2005
a(n) ~ 6n log n. - Charles R Greathouse IV, May 14 2025

Extensions

More terms from Robert G. Wilson v, May 10 2001
Edited by N. J. A. Sloane at the suggestion of R. J. Mathar, Apr 30 2008
Edited by M. F. Hasler, Mar 10 2022

A141849 Primes congruent to 1 mod 11.

Original entry on oeis.org

23, 67, 89, 199, 331, 353, 397, 419, 463, 617, 661, 683, 727, 859, 881, 947, 991, 1013, 1123, 1277, 1321, 1409, 1453, 1607, 1783, 1871, 2003, 2069, 2113, 2179, 2267, 2311, 2333, 2377, 2399, 2531, 2663, 2707, 2729, 2861, 2927, 2971, 3037, 3169, 3191, 3257
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Comments

Conjecture: Also primes p such that ((x+1)^11-1)/x has 10 distinct irreducible factors of degree 1 over GF(p). - Federico Provvedi, Apr 17 2018
Primes congruent to 1 mod 22. - Chai Wah Wu, Apr 28 2025

Crossrefs

Prime sequences A# (k,r) of the form k*n+r with 0 <= r <= k-1 (i.e., primes == r (mod k), or primes p with p mod k = r) and gcd(r,k)=1: A000040 (1,0), A065091 (2,1), A002476 (3,1), A003627 (3,2), A002144 (4,1), A002145 (4,3), A030430 (5,1), A045380 (5,2), A030431 (5,3), A030433 (5,4), A002476 (6,1), A007528 (6,5), A140444 (7,1), A045392 (7,2), A045437 (7,3), A045471 (7,4), A045458 (7,5), A045473 (7,6), A007519 (8,1), A007520 (8,3), A007521 (8,5), A007522 (8,7), A061237 (9,1), A061238 (9,2), A061239 (9,4), A061240 (9,5), A061241 (9,7), A061242 (9,8), A030430 (10,1), A030431 (10,3), A030432 (10,7), A030433 (10,9), this sequence (11,1), A090187 (11,2), A141850 (11,3), A141851 (11,4), A141852 (11,5), A141853 (11,6), A141854 (11,7), A141855 (11,8), A141856 (11,9), A141857 (11,10), A068228 (12,1), A040117 (12,5), A068229 (12,7), A068231 (12,11).
Cf. A034694 (smallest prime == 1 (mod n)).
Cf. A038700 (smallest prime == n-1 (mod n)).
Cf. A038026 (largest possible value of smallest prime == r (mod n)).

Programs

Formula

a(n) ~ 10n log n. - Charles R Greathouse IV, Jul 02 2016

A078403 Primes whose digital root (A038194) is prime.

Original entry on oeis.org

2, 3, 5, 7, 11, 23, 29, 41, 43, 47, 59, 61, 79, 83, 97, 101, 113, 131, 137, 149, 151, 167, 173, 191, 223, 227, 239, 241, 257, 263, 277, 281, 293, 311, 313, 317, 331, 347, 349, 353, 367, 383, 389, 401, 419, 421, 439, 443, 457, 461, 479, 491, 509, 547, 563, 569
Offset: 1

Views

Author

N. J. A. Sloane, Dec 26 2002

Keywords

Comments

Union of A061238, A061240, A061241 and 3. - Ya-Ping Lu, Jan 03 2024

Examples

			59 is a term because 5+9=14, giving (final) iterated sum 1+4=5 and 5 is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[ Range[580], PrimeQ[ # ] && PrimeQ[Mod[ #, 9]] &]
    Select[Prime[Range[200]],PrimeQ[Mod[#,9]]&] (* Harvey P. Dale, Aug 20 2017 *)
  • PARI
    forprime(p=2,997,if(isprime(p%9),print1(p,",")))
    
  • Python
    from sympy import isprime, primerange; [print(p, end = ', ') for p in primerange(2, 570) if isprime(p%9)] # Ya-Ping Lu, Jan 03 2024

Formula

a(n) ~ 2n log n. - Charles R Greathouse IV, May 14 2025

Extensions

A129807 Primes congruent to +-7 mod 18.

Original entry on oeis.org

7, 11, 29, 43, 47, 61, 79, 83, 97, 101, 137, 151, 173, 191, 223, 227, 241, 263, 277, 281, 313, 317, 331, 349, 353, 367, 389, 421, 439, 443, 457, 461, 479, 547, 569, 587, 601, 619, 641, 659, 673, 677, 691, 709, 727, 821, 839, 853, 857, 907, 911, 929, 947, 983, 997, 1019
Offset: 1

Views

Author

N. J. A. Sloane, May 22 2007

Keywords

Comments

Also: primes that are sums of three consecutive terms of A001651. These sum to either 3k+1+3k+2+3k+4=9k+7, candidates for A061241, or 3k+2+3k+4+3k+5=9k+11, candidates for A061238. - R. J. Mathar, Jun 10 2007

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(1300) | p mod 18 in {7, 11} ]; // Vincenzo Librandi, Aug 14 2012
  • Mathematica
    Select[Prime[Range[1000]],MemberQ[{7,11},Mod[ #,18]]&] (* Zak Seidov, May 23 2007 *)

Formula

Conjecture: Equals (A061241 UNION A061238) MINUS {2}. - R. J. Mathar, Jun 10 2007

A024907 Numbers k such that 9*k - 7 is prime.

Original entry on oeis.org

1, 2, 4, 6, 10, 12, 16, 20, 22, 26, 30, 32, 36, 40, 44, 50, 52, 54, 64, 66, 72, 74, 76, 92, 94, 96, 102, 104, 106, 110, 114, 122, 124, 130, 132, 136, 144, 146, 152, 160, 162, 166, 170, 174, 180, 186, 192, 202, 206, 212, 220, 226, 230, 232, 234, 240, 246, 250, 256, 260, 262, 270
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A061238 (associated primes).

Programs

A242776 Primes p such that 2^p + p^2 is not squarefree.

Original entry on oeis.org

2, 11, 13, 29, 31, 47, 67, 83, 101, 103, 137, 139, 157, 173, 191, 193, 211, 227, 229, 263, 281, 283, 317, 337, 353, 373, 389, 397, 409, 421, 443, 461, 463, 479, 499, 569, 571, 587, 607, 641, 643, 659, 661, 677, 719, 733, 751, 769
Offset: 1

Views

Author

Juri-Stepan Gerasimov, May 22 2014

Keywords

Comments

Sequence is infinite by Dirichlet's theorem: all primes which are 2 or 4 mod 9 are members. - Charles R Greathouse IV, May 27 2014
Additional terms: 823, 839, 857, 859, 877, 911, 929, 947, 953, 967, 983. - Kevin P. Thompson, Jun 13 2022

Examples

			2 is in this sequence because 2 is prime and 2^2 + 2^2 = 8 is divisible by 2^2.
11 is in this sequence because it is prime and 2^11 + 11^2 = 2169 is divisible by 3^2.
		

Crossrefs

A061238 and A061239 are subsequences.

Programs

  • Magma
    [n: n in [1..265] | IsPrime(n) and not IsSquarefree(2^n + n^2)];
    
  • Mathematica
    Select[Prime[Range[25]], MoebiusMu[2^# + #^2] == 0 &] (* Alonso del Arte, May 26 2014 *)
    Select[Range[100], PrimeQ[#] && ! SquareFreeQ[2^# + #^2] &] (* Amiram Eldar, Dec 24 2020 *)
  • PARI
    s=[]; forprime(p=2, 300, if(!issquarefree(2^p+p^2), s=concat(s, p); print1(p, ", "))); s \\ Colin Barker, May 22 2014

Formula

a(n) < (4 + o(1))n log n. - Charles R Greathouse IV, May 27 2014

Extensions

a(21)-a(22) from Charles R Greathouse IV, May 26 2014
a(23)-a(30) from Charles R Greathouse IV, May 27 2014
a(31)-a(34) from Amiram Eldar, Dec 24 2020
a(35)-a(47) from Kevin P. Thompson, Jan 15 2022
a(48) from Kevin P. Thompson, Jun 13 2022
Showing 1-10 of 14 results. Next