cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A158910 First Differences of A061240.

Original entry on oeis.org

18, 18, 18, 54, 18, 18, 18, 72, 18, 36, 18, 36, 36, 18, 18, 72, 18, 54, 36, 18, 36, 90, 18, 36, 90, 54, 36, 36, 18, 18, 54, 90, 36, 54, 18, 18, 54, 36, 18, 54, 18, 54, 18, 36, 90, 36, 54, 36, 54, 36, 18, 18, 54, 36, 72, 18, 108, 36, 36, 72, 18, 18, 126, 36, 54, 54, 54, 36, 126
Offset: 1

Views

Author

Paul Curtz, Mar 30 2009

Keywords

Comments

Since A061240 contains prime numbers of the form 9k+5, k even, all numbers here are multiples of 18.

Crossrefs

Cf. A008600.

Programs

  • Mathematica
    Differences[Select[Prime[Range[500]],Mod[#,9]==5&]] (* Harvey P. Dale, May 19 2018 *)

Extensions

Edited and extended by R. J. Mathar, Apr 03 2009

A007528 Primes of the form 6k-1.

Original entry on oeis.org

5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233, 239, 251, 257, 263, 269, 281, 293, 311, 317, 347, 353, 359, 383, 389, 401, 419, 431, 443, 449, 461, 467, 479, 491, 503, 509, 521, 557, 563, 569, 587
Offset: 1

Views

Author

Keywords

Comments

For values of k see A024898.
Also primes p such that p^q - 2 is not prime where q is an odd prime. These numbers cannot be prime because the binomial p^q = (6k-1)^q expands to 6h-1 some h. Then p^q-2 = 6h-1-2 is divisible by 3 thus not prime. - Cino Hilliard, Nov 12 2008
a(n) = A211890(3,n-1) for n <= 4. - Reinhard Zumkeller, Jul 13 2012
There exists a polygonal number P_s(3) = 3s - 3 = a(n) + 1. These are the only primes p with P_s(k) = p + 1, s >= 3, k >= 3, since P_s(k) - 1 is composite for k > 3. - Ralf Steiner, May 17 2018
From Bernard Schott, Feb 14 2019: (Start)
A theorem due to Andrzej Mąkowski: every integer greater than 161 is the sum of distinct primes of the form 6k-1. Examples: 162 = 5 + 11 + 17 + 23 + 47 + 59; 163 = 17 + 23 + 29 + 41 + 53. (See Sierpiński and David Wells.)
{2,3} Union A002476 Union {this sequence} = A000040.
Except for 2 and 3, all Sophie Germain primes are of the form 6k-1.
Except for 3, all the lesser of twin primes are also of the form 6k-1.
Dirichlet's theorem on arithmetic progressions states that this sequence is infinite. (End)
For all elements of this sequence p=6*k-1, there are no (x,y) positive integers such that k=6*x*y-x+y. - Pedro Caceres, Apr 06 2019

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • A. Mąkowski, Partitions into unequal primes, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 8 (1960), 125-126.
  • Wacław Sierpiński, Elementary Theory of Numbers, p. 144, Warsaw, 1964.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, Revised edition, 1997, p. 127.

Crossrefs

Intersection of A016969 and A000040.
Prime sequences A# (k,r) of the form k*n+r with 0 <= r <= k-1 (i.e., primes == r (mod k), or primes p with p mod k = r) and gcd(r,k)=1: A000040 (1,0), A065091 (2,1), A002476 (3,1), A003627 (3,2), A002144 (4,1), A002145 (4,3), A030430 (5,1), A045380 (5,2), A030431 (5,3), A030433 (5,4), A002476 (6,1), this sequence (6,5), A140444 (7,1), A045392 (7,2), A045437 (7,3), A045471 (7,4), A045458 (7,5), A045473 (7,6), A007519 (8,1), A007520 (8,3), A007521 (8,5), A007522 (8,7), A061237 (9,1), A061238 (9,2), A061239 (9,4), A061240 (9,5), A061241 (9,7), A061242 (9,8), A030430 (10,1), A030431 (10,3), A030432 (10,7), A030433 (10,9), A141849 (11,1), A090187 (11,2), A141850 (11,3), A141851 (11,4), A141852 (11,5), A141853 (11,6), A141854 (11,7), A141855 (11,8), A141856 (11,9), A141857 (11,10), A068228 (12,1), A040117 (12,5), A068229 (12,7), A068231 (12,11).
Cf. A034694 (smallest prime == 1 (mod n)).
Cf. A038700 (smallest prime == n-1 (mod n)).
Cf. A038026 (largest possible value of smallest prime == r (mod n)).
Cf. A001359 (lesser of twin primes), A005384 (Sophie Germain primes).

Programs

  • GAP
    Filtered(List([1..100],n->6*n-1),IsPrime); # Muniru A Asiru, May 19 2018
  • Haskell
    a007528 n = a007528_list !! (n-1)
    a007528_list = [x | k <- [0..], let x = 6 * k + 5, a010051' x == 1]
    -- Reinhard Zumkeller, Jul 13 2012
    
  • Maple
    select(isprime,[seq(6*n-1,n=1..100)]); # Muniru A Asiru, May 19 2018
  • Mathematica
    Select[6 Range[100]-1,PrimeQ]  (* Harvey P. Dale, Feb 14 2011 *)
  • PARI
    forprime(p=2, 1e3, if(p%6==5, print1(p, ", "))) \\ Charles R Greathouse IV, Jul 15 2011
    
  • PARI
    forprimestep(p=5,1000,6, print1(p", ")) \\ Charles R Greathouse IV, Mar 03 2025
    

Formula

A003627 \ {2}. - R. J. Mathar, Oct 28 2008
Conjecture: Product_{n >= 1} ((a(n) - 1) / (a(n) + 1)) * ((A002476(n) + 1) / (A002476(n) - 1)) = 3/4. - Dimitris Valianatos, Feb 11 2020
From Vaclav Kotesovec, May 02 2020: (Start)
Product_{k>=1} (1 - 1/a(k)^2) = 9*A175646/Pi^2 = 1/1.060548293.... =4/(3*A333240).
Product_{k>=1} (1 + 1/a(k)^2) = A334482.
Product_{k>=1} (1 - 1/a(k)^3) = A334480.
Product_{k>=1} (1 + 1/a(k)^3) = A334479. (End)
Legendre symbol (-3, a(n)) = -1 and (-3, A002476(n)) = +1, for n >= 1. For prime 3 one sets (-3, 3) = 0. - Wolfdieter Lang, Mar 03 2021

A061237 Prime numbers == 1 (mod 9).

Original entry on oeis.org

19, 37, 73, 109, 127, 163, 181, 199, 271, 307, 379, 397, 433, 487, 523, 541, 577, 613, 631, 739, 757, 811, 829, 883, 919, 937, 991, 1009, 1063, 1117, 1153, 1171, 1279, 1297, 1423, 1459, 1531, 1549, 1567, 1621, 1657, 1693, 1747, 1783, 1801, 1873, 1999
Offset: 1

Views

Author

Amarnath Murthy, Apr 23 2001

Keywords

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(2000) | p mod 9 in {1} ]; // Vincenzo Librandi, Dec 25 2010
  • Mathematica
    Select[ Range[ 2000 ], PrimeQ[ # ] && Mod[ #, 9 ] == 1 & ]
    Select[Prime[Range[350]],Mod[#,9]==1&] (* Harvey P. Dale, Jan 06 2013 *)
  • PARI
    isok(p) = { isprime(p) && p%9 == 1 } \\ Harry J. Smith, Jul 19 2009
    

Formula

A010888(a(n)) = 1. - Reinhard Zumkeller, Feb 25 2005
a(n) ~ 6n log n. - Charles R Greathouse IV, May 14 2025

Extensions

More terms from Robert G. Wilson v, May 10 2001

A061242 Primes of the form 9*k - 1.

Original entry on oeis.org

17, 53, 71, 89, 107, 179, 197, 233, 251, 269, 359, 431, 449, 467, 503, 521, 557, 593, 647, 683, 701, 719, 773, 809, 827, 863, 881, 953, 971, 1061, 1097, 1151, 1187, 1223, 1259, 1277, 1367, 1439, 1493, 1511, 1583, 1601, 1619, 1637, 1709, 1871, 1889, 1907
Offset: 1

Views

Author

Amarnath Murthy, Apr 23 2001

Keywords

Comments

Or, primes of the form 18k - 1. Corresponding values of k are in A138918. - Zak Seidov, Apr 03 2008
From Doug Bell, Mar 23 2009: (Start)
Conjecture: if a(n) = 9x - 1, the integer formed by the repeating digits in the decimal fraction x/a(n) is the smallest integer such that rotating the digits to the left produces a number which is (x+1)/x times larger.
Example: x = 2, a(n) = 17: 2/17 = 0.1176470588235294... repeating with a cycle of 16.
1176470588235294 * 3/2 = 1764705882352941, which is 1176470588235294 rotated to the left.
An additional conjecture is that the values of x from this sequence are the only values where rotating an integer one to the left produces a value (x+1)/x times as large. (End)
The last conjecture is false. For example, for x = 3 we have 230769*(4/3) = 307692, but 9*3-1 = 26 is not in the sequence. - Giovanni Resta, Jul 28 2015
Conjecture: Primes p such that ((x+1)^9-1)/x has 4 irreducible factors of degree 2 over GF(p). - Federico Provvedi, Jun 27 2018

Crossrefs

Cf. A061237, A061238, A061239, A061240, A061241 (p mod 9 = 1, 2, 4, 5 and 7), A138918 (18n - 1 is prime), A258663 (9n - 1 is prime).
Can be partitioned in disjoint subsequences A062343 (primes with sum of digits s = 8), A106758 (s = 17), A106764 (s = 26), A106770 (s = 35), A106776 (s = 44), A106782 (s = 53), A107617 (s = 62), etc.

Programs

  • Magma
    [a: n in [0..250] | IsPrime(a) where a is 9*n - 1 ]; // Vincenzo Librandi, Jun 07 2015
    
  • Maple
    select(isprime, [seq(18*i-1,i=1..1000)]); # Robert Israel, Sep 03 2014
  • Mathematica
    Select[ Range[ 2500 ], PrimeQ[ # ] && Mod[ #, 9 ] == 8 & ]
    Select[9*Range[300] - 1, PrimeQ]
  • PARI
    select( {is(n)=n%9==8&&isprime(n)}, primes([1,2000])) \\ M. F. Hasler, Mar 10 2022
  • Python
    from sympy import prime
    A061242 = [p for p in (prime(n) for n in range(1,10**3)) if not (p+1) % 18]
    # Chai Wah Wu, Sep 02 2014
    

Formula

A010888(a(n)) = 8. - Reinhard Zumkeller, Feb 25 2005
a(n) ~ 6n log n. - Charles R Greathouse IV, May 14 2025

Extensions

More terms from Robert G. Wilson v, May 10 2001
Edited by N. J. A. Sloane at the suggestion of R. J. Mathar, Apr 30 2008
Edited by M. F. Hasler, Mar 10 2022

A141849 Primes congruent to 1 mod 11.

Original entry on oeis.org

23, 67, 89, 199, 331, 353, 397, 419, 463, 617, 661, 683, 727, 859, 881, 947, 991, 1013, 1123, 1277, 1321, 1409, 1453, 1607, 1783, 1871, 2003, 2069, 2113, 2179, 2267, 2311, 2333, 2377, 2399, 2531, 2663, 2707, 2729, 2861, 2927, 2971, 3037, 3169, 3191, 3257
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Comments

Conjecture: Also primes p such that ((x+1)^11-1)/x has 10 distinct irreducible factors of degree 1 over GF(p). - Federico Provvedi, Apr 17 2018
Primes congruent to 1 mod 22. - Chai Wah Wu, Apr 28 2025

Crossrefs

Prime sequences A# (k,r) of the form k*n+r with 0 <= r <= k-1 (i.e., primes == r (mod k), or primes p with p mod k = r) and gcd(r,k)=1: A000040 (1,0), A065091 (2,1), A002476 (3,1), A003627 (3,2), A002144 (4,1), A002145 (4,3), A030430 (5,1), A045380 (5,2), A030431 (5,3), A030433 (5,4), A002476 (6,1), A007528 (6,5), A140444 (7,1), A045392 (7,2), A045437 (7,3), A045471 (7,4), A045458 (7,5), A045473 (7,6), A007519 (8,1), A007520 (8,3), A007521 (8,5), A007522 (8,7), A061237 (9,1), A061238 (9,2), A061239 (9,4), A061240 (9,5), A061241 (9,7), A061242 (9,8), A030430 (10,1), A030431 (10,3), A030432 (10,7), A030433 (10,9), this sequence (11,1), A090187 (11,2), A141850 (11,3), A141851 (11,4), A141852 (11,5), A141853 (11,6), A141854 (11,7), A141855 (11,8), A141856 (11,9), A141857 (11,10), A068228 (12,1), A040117 (12,5), A068229 (12,7), A068231 (12,11).
Cf. A034694 (smallest prime == 1 (mod n)).
Cf. A038700 (smallest prime == n-1 (mod n)).
Cf. A038026 (largest possible value of smallest prime == r (mod n)).

Programs

Formula

a(n) ~ 10n log n. - Charles R Greathouse IV, Jul 02 2016

A078403 Primes whose digital root (A038194) is prime.

Original entry on oeis.org

2, 3, 5, 7, 11, 23, 29, 41, 43, 47, 59, 61, 79, 83, 97, 101, 113, 131, 137, 149, 151, 167, 173, 191, 223, 227, 239, 241, 257, 263, 277, 281, 293, 311, 313, 317, 331, 347, 349, 353, 367, 383, 389, 401, 419, 421, 439, 443, 457, 461, 479, 491, 509, 547, 563, 569
Offset: 1

Views

Author

N. J. A. Sloane, Dec 26 2002

Keywords

Comments

Union of A061238, A061240, A061241 and 3. - Ya-Ping Lu, Jan 03 2024

Examples

			59 is a term because 5+9=14, giving (final) iterated sum 1+4=5 and 5 is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[ Range[580], PrimeQ[ # ] && PrimeQ[Mod[ #, 9]] &]
    Select[Prime[Range[200]],PrimeQ[Mod[#,9]]&] (* Harvey P. Dale, Aug 20 2017 *)
  • PARI
    forprime(p=2,997,if(isprime(p%9),print1(p,",")))
    
  • Python
    from sympy import isprime, primerange; [print(p, end = ', ') for p in primerange(2, 570) if isprime(p%9)] # Ya-Ping Lu, Jan 03 2024

Formula

a(n) ~ 2n log n. - Charles R Greathouse IV, May 14 2025

Extensions

A229324 Composite squarefree numbers n such that p + tau(n) divides n - phi(n), where p are the prime factors of n, tau(n) = A000005(n) and phi(n) = A000010(n).

Original entry on oeis.org

115, 205, 295, 565, 655, 745, 835, 1195, 1285, 1465, 1555, 1735, 1915, 2005, 2095, 2455, 2545, 2815, 2995, 3085, 3265, 3715, 3805, 3985, 4435, 4705, 4885, 5065, 5155, 5245, 5515, 5965, 6145, 6415, 6505, 6595, 6865, 7045, 7135, 7405, 7495, 7765, 7855, 8035
Offset: 1

Views

Author

Paolo P. Lava, Sep 20 2013

Keywords

Comments

All terms are apparently multiple of 5.
It appears that a(n) = 5*A061240(n+1). - Michel Marcus, Sep 21 2013

Examples

			Prime factors of 2815 are 5, 563 and tau(2815) = 4, phi(2815) = 2248. 2815 - 2248 = 567 and  567 / (5 + 4) = 63, 567 / (563 + 4) = 1.
		

Crossrefs

Programs

  • Maple
    with (numtheory); P:=proc(q) global a, b, c, i, ok, p, n;
    for n from 2 to q do  if not isprime(n) then a:=ifactors(n)[2]; ok:=1;
    for i from 1 to nops(a) do if a[i][2]>1 then ok:=0; break;
    else if not type((n-phi(n))/(a[i][1]+tau(n)),integer) then ok:=0; break; fi; fi; od; if ok=1 then print(n); fi; fi; od; end: P(6*10^9);

Extensions

Deleted first term, changed b-file and comment by Paolo P. Lava, Sep 23 2013

A242215 a(n) = 18*n + 5.

Original entry on oeis.org

5, 23, 41, 59, 77, 95, 113, 131, 149, 167, 185, 203, 221, 239, 257, 275, 293, 311, 329, 347, 365, 383, 401, 419, 437, 455, 473, 491, 509, 527, 545, 563, 581, 599, 617, 635, 653, 671, 689, 707, 725, 743, 761, 779, 797, 815, 833, 851, 869, 887, 905, 923, 941, 959
Offset: 0

Views

Author

Arkadiusz Wesolowski, May 07 2014

Keywords

Comments

Conjecture: there are infinitely many composite Fermat numbers such that no one of them has a divisor that belongs to this sequence.

Crossrefs

Supersequence of A061240.
Cf. A229855.

Programs

  • Magma
    [18*n+5: n in [0..53]];
    
  • Maple
    seq(18*n+5, n=0..53);
  • Mathematica
    Table[18*n + 5, {n, 0, 53}]
    LinearRecurrence[{2,-1},{5,23},60] (* Harvey P. Dale, Aug 25 2017 *)
  • PARI
    for(n=0, 53, print1(18*n+5, ", "));

Formula

G.f.: (5 + 13*x)/(1 - x)^2.
From Elmo R. Oliveira, Dec 08 2024: (Start)
E.g.f.: exp(x)*(5 + 18*x).
a(n) = 2*a(n-1) - a(n-2) for n > 1. (End)

A024909 Numbers k such that 9*k - 4 is prime.

Original entry on oeis.org

1, 3, 5, 7, 13, 15, 17, 19, 27, 29, 33, 35, 39, 43, 45, 47, 55, 57, 63, 67, 69, 73, 83, 85, 89, 99, 105, 109, 113, 115, 117, 123, 133, 137, 143, 145, 147, 153, 157, 159, 165, 167, 173, 175, 179, 189, 193, 199, 203, 209, 213, 215, 217, 223, 227, 235, 237, 249, 253, 257, 265, 267
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A061240 (associated primes).

Programs

A158955 First differences of A061241.

Original entry on oeis.org

36, 18, 18, 18, 54, 72, 18, 36, 36, 18, 18, 18, 54, 18, 18, 90, 54, 18, 54, 18, 18, 18, 126, 54, 90, 36, 18, 18, 18, 36, 90, 18, 18, 54, 18, 108, 18, 36, 126, 18, 36, 36, 54, 36, 72, 18, 54, 18, 36, 126, 18, 72, 18, 18, 54, 18, 36, 36, 54, 36, 144, 54, 18, 18, 90, 36, 18, 36, 162, 18
Offset: 1

Views

Author

Paul Curtz, Apr 01 2009

Keywords

Comments

Six prime modulo classes are A061237, A061238, A061239, A061240, A061241 and A061242
with remainders 1, 2, 4, 5, 7, and 8 (mod 9).

Crossrefs

Cf. A158910.

Programs

  • Mathematica
    Differences[Select[Prime[Range[500]],Mod[#,9]==7&]] (* Harvey P. Dale, Oct 13 2022 *)

Extensions

Edited and extended by R. J. Mathar, Apr 04 2009
Showing 1-10 of 12 results. Next