cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A039833 Smallest of three consecutive squarefree numbers k, k+1, k+2 of the form p*q where p and q are distinct primes.

Original entry on oeis.org

33, 85, 93, 141, 201, 213, 217, 301, 393, 445, 633, 697, 921, 1041, 1137, 1261, 1345, 1401, 1641, 1761, 1837, 1893, 1941, 1981, 2101, 2181, 2217, 2305, 2361, 2433, 2461, 2517, 2641, 2721, 2733, 3097, 3385, 3601, 3693, 3865, 3901, 3957, 4285, 4413, 4533, 4593, 4881, 5601
Offset: 1

Views

Author

Keywords

Comments

Equivalently: k, k+1 and k+2 all have 4 divisors.
There cannot be four consecutive squarefree numbers as one of them is divisible by 2^2 = 4.
These 3 consecutive squarefree numbers of the form p*q have altogether 6 prime factors always including 2 and 3. E.g., if k = 99985, the six prime factors are {2,3,5,19997,33329,49993}. The middle term is even and not divisible by 3.
Nonsquare terms of A056809. First terms of A056809 absent here are A056809(4)=121=11^2, A056809(14)=841=29^2, A056809(55)=6241=79^2.
Cf. A179502 (Numbers k with the property that k^2, k^2+1 and k^2+2 are all semiprimes). - Zak Seidov, Oct 27 2015
The numbers k, k+1, k+2 have the form 2p-1, 2p, 2p+1 where p is an odd prime. A195685 gives the sequence of odd primes that generates these maximal runs of three consecutive integers with four positive divisors. - Timothy L. Tiffin, Jul 05 2016
a(n) is always 1 or 9 mod 12. - Charles R Greathouse IV, Mar 19 2022

Examples

			33, 34 and 35 all have 4 divisors.
85 is a term as 85 = 17*5, 86 = 43*2, 87 = 29*3.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section B18.
  • David Wells, Curious and interesting numbers, Penguin Books, 1986, p. 114.

Crossrefs

Programs

  • Haskell
    a039833 n = a039833_list !! (n-1)
    a039833_list = f a006881_list where
       f (u : vs@(v : w : xs))
         | v == u+1 && w == v+1 = u : f vs
         | otherwise            = f vs
    -- Reinhard Zumkeller, Aug 07 2011
    
  • Mathematica
    lst = {}; Do[z = n^3 + 3*n^2 + 2*n; If[PrimeOmega[z/n] == PrimeOmega[z/(n + 2)] == 4 && PrimeNu[z] == 6, AppendTo[lst, n]], {n, 1, 5601, 2}]; lst (* Arkadiusz Wesolowski, Dec 11 2011 *)
    okQ[n_]:=Module[{cl={n,n+1,n+2}},And@@SquareFreeQ/@cl && Union[ DivisorSigma[ 0,cl]]=={4}]; Select[Range[1,6001,2],okQ] (* Harvey P. Dale, Dec 17 2011 *)
    SequencePosition[DivisorSigma[0,Range[6000]],{4,4,4}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 17 2017 *)
  • PARI
    is(n)=n%4==1 && factor(n)[,2]==[1,1]~ && factor(n+1)[,2]==[1,1]~ && factor(n+2)[,2]==[1,1]~ \\ Charles R Greathouse IV, Aug 29 2016
    
  • PARI
    is(n)=my(t=n%12); if(t==1, isprime((n+2)/3) && isprime((n+1)/2) && factor(n)[,2]==[1,1]~, t==9 && isprime(n/3) && isprime((n+1)/2) && factor(n+2)[,2]==[1,1]~) \\ Charles R Greathouse IV, Mar 19 2022

Formula

A008966(a(n)) * A064911(a(n)) * A008966(a(n)+1) * A064911(a(n)+1) * A008966(a(n)+2) * A064911(a(n)+2) = 1. - Reinhard Zumkeller, Feb 26 2011

Extensions

Additional comments from Amarnath Murthy, Vladeta Jovovic, Labos Elemer and Benoit Cloitre, May 08 2002

A070268 Numbers k such that mu(k) + mu(k+1) + mu(k+2) = -3.

Original entry on oeis.org

29, 41, 101, 137, 229, 281, 429, 433, 617, 641, 645, 741, 821, 969, 1021, 1085, 1129, 1221, 1309, 1433, 1489, 1581, 1597, 1605, 1613, 1697, 1741, 1877, 1885, 2013, 2053, 2081, 2085, 2109, 2161, 2237, 2265, 2309, 2337, 2377, 2381, 2397, 2409, 2633, 2657, 2665, 2677
Offset: 1

Views

Author

Sharon Sela (sharonsela(AT)hotmail.com), May 09 2002

Keywords

Comments

All terms == 1 (mod 4). - Robert Israel, Feb 17 2019

Crossrefs

Cf. A008683 (mu), A063838.

Programs

Extensions

More terms from Benoit Cloitre, May 13 2002

A083544 a(n) = maximal value of the sum of Mobius function values over a block of n consecutive natural numbers.

Original entry on oeis.org

1, 2, 3, 3, 4, 5, 6, 6, 7, 8, 9, 9, 10, 11, 12, 12, 12, 13, 14, 14, 15, 16, 17, 17, 18, 18, 19, 19, 20, 21, 22, 22, 23, 24, 24, 24, 25, 26, 27, 27, 28, 29, 30, 30, 31, 32, 33, 33, 34, 34, 35, 35, 36, 37, 38, 38, 39, 39, 40, 40, 41, 42, 43, 43, 44, 45, 45, 45, 46, 47, 48, 48, 49, 49, 50, 50
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Jun 10 2003

Keywords

Comments

Comment from Hugh Montgomery (hlm(AT)umich.edu): I do not recall having seen literature on this question. If p is a prime, p < sqrt(k), then there will be a multiple of p^2 in the block and such a number will then contribute 0. Let Q(M, k) denote the numbers of integers between M+1 and M+k (inclusive) that are not divisible by the square of any prime <= sqrt(k). By the sieve of Eratosthenes-Legendre, Q(M,k) = k/zeta(2) +O(sqrt(k)), uniformly in M. Let Q^+(k) = max_M Q(M,k). I expect that the sum of mu(n) over n = M+1..M+k can be as large as Q^+(k) and as small as -Q^+(k). Indeed, I expect that this could be shown to follow from the prime k-tuple conjecture.
The maximum first appears at A225420(n). - T. D. Noe, May 07 2013

Crossrefs

Formula

a(n) = max sum m=i...(i+n-1) Mobius(m) over i>=1.

Extensions

Offset corrected by Eric M. Schmidt, May 07 2013
More terms from Don Reble, Apr 21 2021

A082967 Numbers n such that mu(n) + mu(n+1) + mu(n+2) + mu(n+3) + mu(n+4) + mu(n+5) + mu(n+6) = 6.

Original entry on oeis.org

213, 1937, 3093, 3097, 4529, 6401, 7165, 9753, 9933, 10117, 10541, 10577, 11301, 13385, 15005, 18641, 18829, 18965, 25089, 34413, 36285, 37833, 37909, 38157, 38405, 38409, 38413, 39529, 40461, 42981, 44457, 46577, 48741, 51365, 55477
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), May 27 2003

Keywords

Comments

The terms up to 18965 were first given by Ignacio Larrosa Cañestro in a thread entitled "Seven consecutive numbers" in the newsgroup sci.math on Apr 29 2003. - Hugo Pfoertner, Aug 26 2006

Crossrefs

Programs

Extensions

More terms from Rick L. Shepherd, May 28 2003

A114180 Numbers n with mu(n) = mu(n+1) = mu(n+2).

Original entry on oeis.org

29, 33, 41, 48, 85, 93, 98, 101, 124, 137, 141, 201, 213, 217, 229, 242, 243, 281, 301, 342, 350, 393, 423, 429, 433, 445, 475, 548, 603, 617, 633, 641, 645, 697, 724, 741, 774, 821, 844, 845, 846, 869, 921, 969, 1021, 1024, 1041, 1085, 1129, 1137, 1189
Offset: 1

Views

Author

Keywords

Comments

Any sequence of 4 or more consecutive numbers with the same value for mu must all have mu(n)=0 (n divisible by a proper square) since at least one of every 4 consecutive numbers is divisible by 4.
A261890(a(n)) = 0. - Reinhard Zumkeller, Sep 05 2015

Examples

			mu(n)=1 for 33,34,35; 85,86,87; 93,94,95; ...
mu(n)=-1 for 29,30,31; 41,42,43; 101,102,103; ...
mu(n)=0 for 48,49,50; 98,99,100; 124,125,126; ...
		

Crossrefs

Union of A070258, A063838 and A070268. Cf. A008683, A070284.
Cf. A261890.

Programs

  • Haskell
    a114180 n = a114180_list !! (n-1)
    a114180_list = filter ((== 0) . a261890) [1..]
    -- Reinhard Zumkeller, Sep 05 2015
  • Mathematica
    SequencePosition[MoebiusMu[Range[1200]],{x_,x_,x_}][[;;,1]] (* Harvey P. Dale, Jul 23 2023 *)

A063736 Patterns of possible squarefree triples of 3 consecutive numbers {4k+1, 4k+2, 4k+3} are coded as follows: compute A008966(x) getting one of {000, 001, 010, 011, 100, 101, 110, 111} and convert to decimal.

Original entry on oeis.org

7, 7, 3, 7, 5, 7, 2, 7, 7, 7, 7, 3, 1, 5, 7, 6, 7, 7, 6, 7, 3, 7, 5, 7, 4, 7, 7, 7, 7, 3, 3, 1, 7, 6, 7, 7, 6, 5, 3, 7, 5, 7, 2, 6, 7, 7, 7, 3, 7, 5, 7, 6, 7, 7, 7, 7, 3, 7, 5, 7, 4, 3, 5, 7, 7, 3, 7, 5, 6, 6, 7, 7, 3, 5, 3, 7, 5, 7, 6, 7, 7, 3, 7, 3, 5, 4, 7, 4, 7, 7, 2, 7, 3, 6, 5, 7, 6, 7, 7, 7, 7, 3, 7, 5, 7
Offset: 0

Views

Author

Labos Elemer, Aug 24 2001

Keywords

Comments

All code values arise corresponding to 8 classes of patterns. E.g., the first nonsquarefree triple (000 pattern, code=0) appears at 844, [845, 846, 847], 848 as a middle part of a nonsquarefree 5-tuple. Start values of code=7 triples are listed in A063238.

Examples

			a(0) = 4*A008966(1)+2*A008966(2)+A008966(3) = 4+2+1 = 7.
a(11) = 4*A008966(45)+2*A008966(46)+A008966(47) = 0+2+1 = 3.
a(12) = 4*A008966(49)+2*A008966(50)+A008966(51) = 0+0+1 = 1.
a(13) = 4*A008966(53)+2*A008966(54)+A008966(55) = 4+0+1 = 5.
a(14) = 4*A008966(57)+2*A008966(58)+A008966(59) = 4+2+1 = 7.
		

Crossrefs

Formula

a(n) = 4*A008966(4n+1)+2*A008966(4n+2)+A008966(4n+3).

A063848 Numbers k such that mu(k) + mu(k+1) + mu(k+2) = 2.

Original entry on oeis.org

14, 20, 32, 34, 38, 55, 56, 84, 86, 91, 92, 94, 117, 118, 121, 122, 132, 133, 140, 142, 143, 144, 145, 158, 159, 176, 183, 200, 202, 203, 204, 205, 208, 212, 214, 215, 216, 218, 219, 235, 247, 252, 297, 298, 299, 300, 302, 303, 319, 325, 326, 327, 328, 333
Offset: 1

Views

Author

Jason Earls, Aug 26 2001

Keywords

Crossrefs

Cf. A063838.

Programs

  • Mathematica
    Flatten[Position[Partition[MoebiusMu[Range[350]],3,1],?(Total[#]==2&),{1},Heads->False]] (* _Harvey P. Dale, Nov 26 2015 *)
  • PARI
    m(n) = moebius(n)+moebius(n+1)+moebius(n+2);
    j=[]; for(n=1,1000, if(m(n)==2,j=concat(j,n))); j
    
  • PARI
    M(n) = moebius(n) + moebius(n + 1) + moebius(n + 2)
    { n=0; for (m=1, 10^9, if(M(m)==2, write("b063848.txt", n++, " ", m); if (n==1000, break)) ) } \\ Harry J. Smith, Sep 01 2009

A063849 Numbers k such that mu(k) + mu(k+1) + mu(k+2) = 1.

Original entry on oeis.org

8, 13, 21, 24, 25, 26, 37, 44, 49, 50, 54, 57, 62, 63, 74, 75, 80, 90, 115, 116, 119, 120, 123, 134, 146, 157, 160, 175, 177, 185, 187, 206, 207, 209, 224, 234, 248, 253, 259, 260, 265, 274, 278, 287, 294, 295, 296, 304, 314, 321, 323, 324, 329, 332, 338, 340
Offset: 1

Views

Author

Jason Earls, Aug 26 2001

Keywords

Crossrefs

Cf. A063838.

Programs

  • PARI
    m(n)=moebius(n)+moebius(n+1)+moebius(n+2);
    j=[]; for(n=1,1000, if(m(n)==1,j=concat(j,n))); j
    
  • PARI
    M(n) = moebius(n) + moebius(n + 1) + moebius(n + 2)
    { n=0; for (m=1, 10^9, if(M(m)==1, write("b063849.txt", n++, " ", m); if (n==1000, break)) ) } \\ Harry J. Smith, Sep 01 2009

A063684 Numbers k such that m(k!) = 2, where m(k) = mu(k) + mu(k+1) + mu(k+2).

Original entry on oeis.org

8, 13, 14, 18, 19, 20, 25, 36, 38, 43, 48, 51, 52, 54, 60, 71, 74, 75, 78, 80, 87, 91, 92, 105, 108, 110, 112, 114
Offset: 1

Views

Author

Jason Earls, Aug 22 2001

Keywords

Comments

Equivalently, k such that m(k!) = 2, where m(k) = mu(k+1) + mu(k+2), as mu(k!)=0 for all k >= 4 (because 4=2^2 divides k!). - Rick L. Shepherd, Aug 20 2003
127 belongs to the sequence. - Serge Batalov, Feb 17 2011

Examples

			8 is a term: 8! = 40320; mu(40320) = 0, mu(40321) = 1, mu(40322) = 1, 0+1+1 = 2.
98 is not a term because 98! + 2 = 2 * 31003012014959 * 114951592532951 * 2015644865638913835753087050212028452990938458387 * P78 has an odd number of factors. - _Sean A. Irvine_, Feb 03 2010
		

Crossrefs

Cf. A084846 (mu(n!+1)).

Programs

  • PARI
    m(n) = moebius(n)+moebius(n+1)+moebius(n+2); for(n=1,10^4, if(m(n!)==2,print(n)))

Extensions

More terms from Rick L. Shepherd, Aug 20 2003
Two more terms from Sean A. Irvine, Feb 03 2010, Feb 08 2010
Two new terms, 105 and 108, from Daniel M. Jensen, Feb 19 2011, Mar 02 2011
Two more terms, 110 and 112, from Serge Batalov, Mar 04-05 2011
One more term, 114, from Sean A. Irvine, May 25 2015
Showing 1-9 of 9 results.