A257815
Inverse permutation of A064364, when seen as flattened list.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 9, 7, 8, 10, 24, 11, 37, 15, 12, 13, 82, 14, 118, 16, 19, 38, 232, 17, 20, 56, 18, 25, 574, 21, 759, 22, 46, 119, 30, 23, 1663, 167, 68, 26, 2700, 31, 3408, 57, 27, 318, 5338, 28, 47, 32, 141, 83, 10078, 29, 69, 39, 197, 760, 18312, 33, 22180
Offset: 1
A376302
Smallest powerful m in row n of A064364, or -1 if none exist.
Original entry on oeis.org
1, -1, -1, 4, -1, 8, -1, 16, 27, 25, -1, 64, 108, 49, 125, 200, 432, 196, 500, 392, 343, 121, 1323, 1225, 1372, 169, 2744, 968, 5488, 676, 3267, 1352, 1331, 289, 4563, 4225, 5324, 361, 2197, 2312, 21125, 1444, 7803, 2888, 17576, 529, 9747, 9025, 36125, 2116, 4913
Offset: 1
First 13 rows of A064364 indicating the smallest powerful number in each row with brackets and other powerful numbers in parentheses. Rows 2, 3, 5, 7, and 11 do not have powerful numbers.
n Row n of A064364
-------------------------------------------------
1: [1]
2: 2
3: 3
4: [4]
5: 5 6
6: [8] (9)
7: 7 10 12
8: 15 [16] 18
9: 14 20 24 [27]
10: 21 [25] 30 32 (36)
11: 11 28 40 45 48 54
12: 35 42 50 60 [64] 72 (81)
13: 13 22 56 63 75 80 90 96 [108]
-
s = With[{nn = 40000}, Union@ Flatten@ Table[a^2*b^3, {b, Surd[nn, 3]},
{a, Sqrt[nn/b^3]}]];
Insert[#, -1, Map[List, {2, 2, 3, 4, 7}]] &@
s[[Values[#[[7 ;; 7 + LengthWhile[Differences@
Keys[#][[7 ;; -1]], # == 1 &] ]] ][[All, 1]] ]] &@
KeySort@ PositionIndex@
Map[Total@ Flatten[ConstantArray[#1, #2] & @@@ FactorInteger[#]] &, s]
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 8, 9, 7, 10, 12, 15, 16, 18, 14, 20, 24, 27, 21, 25, 30, 32, 36, 11
Offset: 1
A000792
a(n) = max{(n - i)*a(i) : i < n}; a(0) = 1.
Original entry on oeis.org
1, 1, 2, 3, 4, 6, 9, 12, 18, 27, 36, 54, 81, 108, 162, 243, 324, 486, 729, 972, 1458, 2187, 2916, 4374, 6561, 8748, 13122, 19683, 26244, 39366, 59049, 78732, 118098, 177147, 236196, 354294, 531441, 708588, 1062882, 1594323, 2125764, 3188646, 4782969, 6377292
Offset: 0
a{8} = 18 because we have 18 = (8-5)*a(5) = 3*6 and one can verify that this is the maximum.
a(5) = 6: the 7 partitions of 5 are (5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1) and the corresponding products are 5, 4, 6, 3, 4, 2 and 1; 6 is the largest.
G.f. = 1 + x + 2*x^2 + 3*x^3 + 4*x^4 + 6*x^5 + 9*x^6 + 12*x^7 + 18*x^8 + ...
- B. R. Barwell, Cutting String and Arranging Counters, J. Rec. Math., 4 (1971), 164-168.
- B. R. Barwell, Journal of Recreational Mathematics, "Maximum Product": Solution to Prob. 2004;25(4) 1993, Baywood, NY.
- M. Capobianco and J. C. Molluzzo, Examples and Counterexamples in Graph Theory, p. 207. North-Holland: 1978.
- S. L. Greitzer, International Mathematical Olympiads 1959-1977, Prob. 1976/4 pp. 18;182-3 NML vol. 27 MAA 1978
- J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 396.
- P. R. Halmos, Problems for Mathematicians Young and Old, Math. Assoc. Amer., 1991, pp. 30-31 and 188.
- L. C. Larson, Problem-Solving Through Problems. Problem 1.1.4 pp. 7. Springer-Verlag 1983.
- D. J. Newman, A Problem Seminar. Problem 15 pp. 5;15. Springer-Verlag 1982.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..500
- R. Bercov and L. Moser, On Abelian permutation groups, Canad. Math. Bull. 8 (1965) 627-630.
- Walter Bridges and William Craig, On the distribution of the norm of partitions, arXiv:2308.00123 [math.CO], 2023.
- J. Arias de Reyna and J. van de Lune, The question "How many 1's are needed?" revisited, arXiv preprint arXiv:1404.1850 [math.NT], 2014. See M_n.
- J. Arias de Reyna and J. van de Lune, Algorithms for determining integer complexity, arXiv preprint arXiv:1404.2183 [math.NT], 2014.
- Nigel Derby, 96.21 The MaxProduct partition, The Mathematical Gazette 96:535 (2012), pp. 148-151.
- Tomislav Doslic, Maximum Product Over Partitions Into Distinct Parts, Journal of Integer Sequences, Vol. 8 (2005), Article 05.5.8.
- Hans Havermann, Tables of sum-of-prime-factors sequences (overview with links to the first 50000 sums).
- J. Iraids, K. Balodis, J. Cernenoks, M. Opmanis, R. Opmanis and K. Podnieks, Integer Complexity: Experimental and Analytical Results, arXiv preprint arXiv:1203.6462 [math.NT], 2012.
- Andrew Kenney and Caroline Shapcott, Maximum Part-Products of Odd Palindromic Compositions, Journal of Integer Sequences, Vol. 18 (2015), Article 15.2.6.
- E. F. Krause, Maximizing The Product of Summands, Mathematics Magazine, MAA Oct 1996, Vol. 69, no. 5 pp. 270-271.
- MathPro, 20000 Problems Under the Sea, Problem 14856.Putnam 1979/A1.
- J. W. Moon and L. Moser, On cliques in graphs, Israel J. Math. 3 (1965), 23-28.
- Natasha Morrison and Alex Scott, Maximizing the number of induced cycles in a graph, Preprint, 2016. See f_2(n).
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- F. Pluvinage, Developing problem solving experiences in practical action projects, The Mathematics Enthusiast, ISSN 1551-3440, Vol. 10, nos. 1 & 2, pp. 219-244.
- D. A. Rawsthorne, How many 1's are needed?, Fib. Quart. 27 (1989), 14-17.
- J. T. Rowell, Solution Sequences for the Keyboard Problem and its Generalizations, Journal of Integer Sequences, 18 (2015), #15.10.7.
- Robert Schneider and Andrew V. Sills, The Product of Parts or "Norm" of a Partition, Integers (2020) Vol. 20A, Article #A13.
- J. Scholes, 40th Putnam 1979 Problem A1.
- J. Scholes, 18th IMO 1976 Problem 4.
- Andrew V. Sills and Robert Schneider, The product of parts or "norm" of a partition, arXiv:1904.08004 [math.NT], 2019.
- V. Vatter, Maximal independent sets and separating covers, Amer. Math. Monthly, 118 (2011), 418-423.
- Robert G. Wilson v, Letter to N. J. Sloane, circa 1991.
- A. C.-C. Yao, On a problem of Katona on minimal separating systems, Discrete Math., 15 (1976), 193-199.
- Index to sequences related to the complexity of n
- Index entries for linear recurrences with constant coefficients, signature (0,0,3).
Cf. array
A064364, rightmost (nonvanishing) numbers in row n >= 2.
See
A056240 and
A288814 for the minimal numbers whose prime factors sums up to n.
-
a000792 n = a000792_list !! n
a000792_list = 1 : f [1] where
f xs = y : f (y:xs) where y = maximum $ zipWith (*) [1..] xs
-- Reinhard Zumkeller, Dec 17 2011
-
I:=[1,1,2,3,4]; [n le 5 select I[n] else 3*Self(n-3): n in [1..45]]; // Vincenzo Librandi, Apr 14 2015
-
A000792 := proc(n)
m := floor(n/3) ;
if n mod 3 = 0 then
3^m ;
elif n mod 3 = 1 then
4*3^(m-1) ;
else
2*3^m ;
end if;
floor(%) ;
end proc: # R. J. Mathar, May 26 2013
-
a[1] = 1; a[n_] := 4* 3^(1/3 *(n - 1) - 1) /; (Mod[n, 3] == 1 && n > 1); a[n_] := 2*3^(1/3*(n - 2)) /; Mod[n, 3] == 2; a[n_] := 3^(n/3) /; Mod[n, 3] == 0; Table[a[n], {n, 0, 40}]
CoefficientList[Series[(1 + x + 2x^2 + x^4)/(1 - 3x^3), {x, 0, 50}], x] (* Harvey P. Dale, May 01 2011 *)
f[n_] := Max[ Times @@@ IntegerPartitions[n, All, Prime@ Range@ PrimePi@ n]]; f[1] = 1; Array[f, 43, 0] (* Robert G. Wilson v, Jul 31 2012 *)
a[ n_] := If[ n < 2, Boole[ n > -1], 2^Mod[-n, 3] 3^(Quotient[ n - 1, 3] + Mod[n - 1, 3] - 1)]; (* Michael Somos, Jan 23 2014 *)
Join[{1, 1}, LinearRecurrence[{0, 0, 3}, {2, 3, 4}, 50]] (* Jean-François Alcover, Jan 08 2019 *)
Join[{1,1},NestList[#+Divisors[#][[-2]]&,2,41]] (* James C. McMahon, Aug 09 2024 *)
-
{a(n) = floor( 3^(n - 4 - (n - 4) \ 3 * 2) * 2^( -n%3))}; /* Michael Somos, Jul 23 2002 */
-
lista(nn) = {print1("1, 1, "); print1(a=2, ", "); for (n=1, nn, a += a/divisors(a)[2]; print1(a, ", "););} \\ Michel Marcus, Apr 14 2015
-
A000792(n)=if(n>1,3^((n-2)\3)*(2+(n-2)%3),1) \\ M. F. Hasler, Jan 19 2019
More terms and better description from Therese Biedl (biedl(AT)uwaterloo.ca), Jan 19 2000
A056240
Smallest number whose prime divisors (taken with multiplicity) add to n.
Original entry on oeis.org
2, 3, 4, 5, 8, 7, 15, 14, 21, 11, 35, 13, 33, 26, 39, 17, 65, 19, 51, 38, 57, 23, 95, 46, 69, 92, 115, 29, 161, 31, 87, 62, 93, 124, 155, 37, 217, 74, 111, 41, 185, 43, 123, 86, 129, 47, 215, 94, 141, 188, 235, 53, 329, 106, 159, 212, 265, 59, 371, 61, 177, 122
Offset: 2
a(8) = 15 = 3*5 because 15 is the smallest number whose prime divisors sum to 8.
a(10000) = 586519: Let pp(n) be the largest prime < n and the candidate being the current value that might be a(10000). Then we see that pp(10000 - 1) = 9973, giving a candidate 9973 * a(10000 - 9973) = 9973 * 92. pp(9973) = 9967, giving a candidate 9967 * a(10000 - 9967) = 9967 * 62. pp(9967) = 9949, giving the candidate 9949 * a(10000 - 9949) = 9962 * 188. This is larger than our candidate so we keep 9967 * 62 as our candidate. pp(9949) = 9941, giving a candidate 9941 * pp(10000 - 9941) = 9941 * 59. We see that (n - p) * a(p) >= (n - p) * p > candidate = 9941 * 59 for p > 59 so we stop iterating to conclude a(10000) = 9941 * 59 = 586519. - _David A. Corneth_, Mar 23 2018, edited by _M. F. Hasler_, Jan 19 2019
First column of array
A064364, n>=2.
See
A000792 for the maximal numbers whose prime factors sums up to n.
-
a056240 = (+ 1) . fromJust . (`elemIndex` a001414_list)
-- Reinhard Zumkeller, Jun 14 2012
-
A056240 := proc(n)
local k ;
for k from 1 do
if A001414(k) = n then
return k ;
end if;
end do:
end proc:
seq(A056240(n),n=2..80) ; # R. J. Mathar, Apr 15 2024
-
a = Table[0, {75}]; Do[b = Plus @@ Flatten[ Table[ #1, {#2}] & @@@ FactorInteger[n]]; If[b < 76 && a[[b]] == 0, a[[b]] = n], {n, 2, 1000}]; a (* Robert G. Wilson v, May 04 2002 *)
b[n_] := b[n] = Total[Times @@@ FactorInteger[n]];
a[n_] := For[k = 2, True, k++, If[b[k] == n, Return[k]]];
Table[a[n], {n, 2, 63}] (* Jean-François Alcover, Jul 03 2017 *)
-
isok(k, n) = my(f=factor(k)); sum(j=1, #f~, f[j,1]*f[j,2]) == n;
a(n) = my(k=2); while(!isok(k, n), k++); k; \\ Michel Marcus, Jun 21 2017
-
a(n) = {if(n < 7, return(n + 2*(n==6))); my(p = precprime(n), res); if(p == n, return(p), p = precprime(n - 2); res = p * a(n - p); while(res > (n - p) * p && p > 2, p = precprime(p - 1); res = min(res, a(n - p) * p)); res)} \\ David A. Corneth, Mar 23 2018
-
A056240(n, p=n-1, m=oo)=if(n<6 || isprime(n), n, n==6, 8, until(p<3 || (n-p=precprime(p-1))*p >= m=min(m,A056240(n-p)*p),); m) \\ M. F. Hasler, Jan 19 2019
A002098
G.f.: 1/Product_{k>=1} (1-prime(k)*x^prime(k)).
Original entry on oeis.org
1, 0, 2, 3, 4, 11, 17, 29, 49, 85, 144, 226, 404, 603, 1025, 1679, 2558, 4201, 6677, 10190, 16599, 25681, 39643, 61830, 96771, 147114, 228338, 352725, 533291, 818624, 1263259, 1885918, 2900270, 4396577, 6595481, 10040029, 15166064, 22642064
Offset: 0
- S.M. Kerawala, On a Pair of Arithmetic Functions Analogous to Chawla's Pair, J. Natural Sciences and Mathematics, 9 (1969), circa p. 103.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
b:= proc(n,i) option remember;
if n<0 then 0
elif n=0 then 1
elif i=0 then 0
else b(n, i-1) +b(n-ithprime(i), i) *ithprime(i)
fi
end:
a:= n-> b(n, numtheory[pi](n)):
seq(a(n), n=0..40); # Alois P. Heinz, Nov 20 2010
-
b[n_, i_] := b[n, i] = Which[n<0, 0, n==0, 1, i==0, 0, True, b[n, i-1] + b[n - Prime[i], i]*Prime[i]]; a[n_] := b[n, PrimePi[n]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 19 2016, after Alois P. Heinz *)
With[{nn=40},CoefficientList[Series[1/Product[1-Prime[k]x^Prime[k],{k,nn}],{x,0,nn}],x]] (* Harvey P. Dale, Jun 20 2021 *)
-
my(N=40, x='x+O('x^N)); Vec(1/prod(k=1, N, 1-isprime(k)*k*x^k)) \\ Seiichi Manyama, Feb 27 2022
A178595
Natural numbers sorted by the sum of square roots of prime factors.
Original entry on oeis.org
1, 2, 3, 5, 7, 4, 6, 11, 9, 13, 10, 15, 14, 17, 8, 19, 21, 25, 12, 22, 23, 18, 35, 26, 33, 20, 27, 49, 39, 30, 29, 28, 34, 55, 31, 16, 45, 38, 42, 65, 51, 50, 77, 24, 37, 57, 63, 44, 75, 46, 91, 36, 70, 85, 41, 52, 66, 40, 69, 43, 95, 54, 105, 121, 98, 125, 78, 119, 99, 60, 58
Offset: 1
-
SortBy[Table[{n,Total[N[Sqrt[Flatten[Table[#[[1]],#[[2]]]&/@FactorInteger[n]]]]]},{n,150}],Last][[;;,1]] (* Harvey P. Dale, May 20 2023 *)
A376147
a(1)=1, followed by array T(n,k), n>=1, k>=2 read by antidiagonals (downwards) wherein the first row is A056240, and the k-th column records in ascending order the numbers m such that A001414(m) = k.
Original entry on oeis.org
1, 2, 3, 4, 5, 8, 6, 7, 9, 15, 10, 14, 16, 12, 21, 20, 18, 11, 25, 24, 35, 28, 30, 27, 13, 42, 40, 32, 33, 22, 50, 45, 36, 26, 49, 56, 60, 48, 39, 44, 70, 63, 64, 54, 17, 55, 105, 84, 75, 72, 65, 52, 66, 112, 100, 80, 81, 19, 77, 88, 98, 125, 120, 90, 51, 34, 78
Offset: 1
Construct the irregular table T(n,k) as follows:
The first row T(1,k) is A056240, smallest number whose sum of prime divisors (with multiplicity) is k (k>=2). The second row T(2,k) is the second smallest number (if it exists) whose sum of prime divisors is k, and so on. The k-th column is then the ordered list of the A000607(k) numbers (k>=2) whose prime divisors sum to k, the final term of which is A000792(k), after which the k-th column contains no further terms. The sum of the terms in the k-th column (k>=2) is A002098(k).
Read the table T(n,k) by antidiagonals downwards to obtain the data:
2, 3, 4, 5, 8, 7, 15, 14, 21, 11, 35, 13.. (A056240)
6, 9,10, 16, 20, 25, 28, 42, 22..
12, 18, 24, 30, 40, 50, 56..
27, 32, 45, 60, 63..
36, 48, 64, 75..
54, 72, 80..
81, 90..
And so on…
-
kk = 30;
MapIndexed[Set[t[First[#2]], #1] &,
Rest@ CoefficientList[
Series[(1 + x + 2 x^2 + x^4)/(1 - 3 x^3), {x, 0, kk}], x] ];
Array[Set[r[#],
Total@ Flatten[ConstantArray[#1, #2] & @@@ FactorInteger[#]]] &, t[kk]];
s = Table[
Select[Range[Prime@ PrimePi[k], t[k]], r[#] == k &], {k, 2, kk}];
Join[{1}, s[[1]],
Table[i = 1; m = n;
Reap[While[And[m > 1, Length@ s[[m]] >= i], Sow[s[[m, i]] ]; m--;
i++]][[-1, 1]], {n, 2, kk - 1}] ] // Flatten (* Michael De Vlieger, Sep 18 2024 *)
A168521
Sort numbers by value of sum of squares of prime factors (cf. A067666). Break ties by putting smaller numbers first. Begin with 0, 1.
Original entry on oeis.org
0, 1, 2, 4, 3, 8, 6, 16, 12, 9, 32, 24, 18, 64, 5, 48, 36, 27, 128, 10, 96, 72, 54, 256, 20, 192, 15, 144, 108, 81, 512, 40, 384, 30, 288, 216, 162, 1024, 80, 768, 60, 576, 45, 432, 324, 2048, 160, 243, 1536, 120, 1152, 90, 864, 648, 4096, 7, 320, 486, 3072, 25, 240
Offset: 1
Keith Flower (keith.flower(AT)gmail.com), Nov 28 2009
For m = 7, distance d from the origin of P_7 is 7, for m = 8192 (P_8192 = [2,2,2,2,2,2,2,2,2,2,2,2,2]) d = sqrt(13*2^2) = 7.211102550927978. So 7 appears before 8192.
Explanatory table for initial terms:
n a(n) P_{a(n)}
1 0 (appears here as prescribed)
2 1 (appears here as prescribed)
Calculation of d^2
3 2 -> [2] -> 2^2 = 4
4 4 -> [2,2] -> 2^2 + 2^2 = 8
5 3 -> [3] -> 3^3 = 9
6 8 -> [2,2,2] -> 2^2 + 2^2 + 2^2 = 12
7 6 -> [2,3] -> 2^2 + 3^2 = 13
8 16 -> [2,2,2,2] -> 2^2 + 2^2 + 2^2 + 2^2 = 16
9 12 -> [2,2,3] -> 2^2 + 2^2 + 3^2 = 17
It would also be worthwhile computing the companion sequence where ties are broken according to lexicographic order of the lists of prime factors (so that 48 would come before 5, instead of after). -
N. J. A. Sloane, Nov 29 2009
A267000
a(n) is the smallest m such that A001414(m)=n and ((m=0) mod n) and m/n is both squarefree and prime to n, or 0 if no such m exists.
Original entry on oeis.org
2, 3, 4, 5, 0, 7, 0, 0, 30, 11, 60, 13, 70, 105, 240, 17, 0, 19, 220, 231, 0, 23, 0, 650, 286, 1755, 476, 29, 2730, 31, 1824, 627, 3570, 805, 4788, 37, 646, 897, 1160, 41, 8778, 43, 1276, 11385, 8970, 47, 1776, 36309, 10850, 1581, 41860, 53, 2322, 4070, 2408, 45885, 16530, 59
Offset: 2
a(10) = 30 since A001414(30)=10 and 30 is divisible by 10, and 30/10=3 is squarefree and prime to 10.
-
sopfr(n) = {my(f=factor(n)); sum(k=1, #f~, f[k, 1]*f[k, 2]); }
first(n) = {my(k=1); while (sopfr(k) != n, k++); k;}
last(n) = polcoeff((1+x+2*x^2+x^4)/(1-3*x^3) + O(x^(n + 3)), n);
a(n) = {na = first(n); nb = last(n); for (m=na, nb, if ((sopfr(m) == n) && (! (m % n)) && issquarefree(m/n) && (gcd(m/n, n) == 1), return(m)););}
Showing 1-10 of 14 results.
Comments