cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A000689 Final decimal digit of 2^n.

Original entry on oeis.org

1, 2, 4, 8, 6, 2, 4, 8, 6, 2, 4, 8, 6, 2, 4, 8, 6, 2, 4, 8, 6, 2, 4, 8, 6, 2, 4, 8, 6, 2, 4, 8, 6, 2, 4, 8, 6, 2, 4, 8, 6, 2, 4, 8, 6, 2, 4, 8, 6, 2, 4, 8, 6, 2, 4, 8, 6, 2, 4, 8, 6, 2, 4, 8, 6, 2, 4, 8, 6, 2, 4, 8, 6, 2, 4, 8, 6, 2, 4, 8, 6
Offset: 0

Views

Author

Keywords

Comments

These are the analogs of the powers of 2 in carryless arithmetic mod 10.
Let G = {2,4,8,6}. Let o be defined as XoY = least significant digit in XY. Then (G,o) is an Abelian group wherein 2 is a generator (also see the first comment under A001148). - K.V.Iyer, Mar 12 2010
This is also the decimal expansion of 227/1818. - Kritsada Moomuang, Dec 21 2021

Examples

			G.f. = 1 + 2*x + 4*x^2 + 8*x^3 + 6*x^4 + 2*x^5 + 4*x^6 + 8*x^7 + 6*x^8 + ...
		

Crossrefs

Programs

  • Haskell
    a000689 n = a000689_list !! n
    a000689_list = 1 : cycle [2,4,8,6]  -- Reinhard Zumkeller, Sep 15 2011
  • Magma
    [2^n mod 10: n in [0..150]]; // Vincenzo Librandi, Apr 12 2011
    
  • Mathematica
    Table[PowerMod[2, n, 10], {n, 0, 200}] (* Vladimir Joseph Stephan Orlovsky, Jun 10 2011 *)
  • PARI
    for(n=0,80, if(n,{x=(n+3)%4+1; print1(10-(4*x^3+47*x-27*x^2)/3,", ")},{print1("1, ")}))
    
  • SageMath
    [power_mod(2,n,10)for n in range(0, 81)] # Zerinvary Lajos, Nov 03 2009
    

Formula

Periodic with period 4.
a(n) = 2^n mod 10.
a(n) = A002081(n) - A002081(n-1), for n > 0.
From R. J. Mathar, Apr 13 2010: (Start)
a(n) = a(n-1) - a(n-2) + a(n-3), n > 3.
G.f.: (x+3*x^2+5*x^3+1)/((1-x) * (1+x^2)). (End)
For n >= 1, a(n) = 10 - (4x^3 + 47x - 27x^2)/3, where x = (n+3) mod 4 + 1.
For n >= 1, a(n) = A070402(n) + 5*floor( ((n-1) mod 4)/2 ).
G.f.: 1 / (1 - 2*x / (1 + 5*x^3 / (1 + x / (1 - 3*x / (1 + 3*x))))). - Michael Somos, May 12 2012
a(n) = 5 + cos((n*Pi)/2) - 3*sin((n*Pi)/2) for n >= 1. - Kritsada Moomuang, Dec 21 2021

A201908 Irregular triangle of 2^k mod (2n-1).

Original entry on oeis.org

0, 1, 2, 1, 2, 4, 3, 1, 2, 4, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 5, 10, 9, 7, 3, 6, 1, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1, 2, 4, 8, 1, 2, 4, 8, 16, 15, 13, 9, 1, 2, 4, 8, 16, 13, 7, 14, 9, 18, 17, 15, 11, 3, 6, 12, 5, 10, 1, 2, 4, 8, 16, 11, 1, 2, 4, 8, 16, 9
Offset: 1

Views

Author

T. D. Noe, Dec 07 2011

Keywords

Comments

The length of the rows is given by A002326. For n > 1, the first term of row n is 1 and the last term is n. Many sequences are in this one: starting at A036117 (mod 11) and A070335 (mod 23).
Row n, for n >= 2, divided elementwise by (2*n-1) gives the cycles of iterations of the doubling function D(x) = 2*x or 2*x-1 if 0 <= x < 1/2 or , 1/2 <= x < 1, respectively, with seed 1/(2*n-1). See the Devaney reference, pp. 25-26. D^[k](x) = frac(2^k/(2*n-1)), for k = 0, 1, ..., A002326(n-1) - 1. E.g., n = 3: 1/5, 2/5, 4/5, 3/5. - Gary W. Adamson and Wolfdieter Lang, Jul 29 2020.

Examples

			The irregular triangle T(n, k) begins:
n\k  0 1 2 3  4  5  6  7 8  9 10 11 12 13 14 15 16 17 ...
---------------------------------------------------------
1:   0
2:   1 2
3:   1 2 4 3
4:   1 2 4
5:   1 2 4 8  7  5
6:   1 2 4 8  5 10  9  7 3  6
7:   1 2 4 8  3  6 12 11 9  5 10  7
8:   1 2 4 8
9:   1 2 4 8 16 15 13  9
10:  1 2 4 8 16 13  7 14 9 18 17 15 11  3  6 12  5 10
... reformatted by _Wolfdieter Lang_, Jul 29 2020.
		

References

  • Robert L. Devaney, A First Course in Chaotic Dynamical Systems, Addison-Wesley., 1992. pp. 24-25

Crossrefs

Cf. A002326, A201909 (3^k), A201910 (5^k), A201911 (7^k).
Cf. A000034 (3), A070402 (5), A069705 (7), A036117 (11), A036118 (13), A062116 (17), A036120 (19), A070347 (21), A070335 (23), A070336 (25), A070337 (27), A036122 (29), A070338 (33), A070339 (35), A036124 (37), A070340 (39), A070348 (41), A070349 (43), A070350 (45), A070351 (47), A036128 (53), A036129 (59), A036130 (61), A036131 (67), A036135 (83), A036138 (101), A036140 (107), A201920 (125), A036144 (131), A036146 (139), A036147 (149), A036150 (163), A036152 (173), A036153 (179), A036154 (181), A036157 (197), A036159 (211), A036161 (227).

Programs

  • GAP
    R:=List([0..72],n->OrderMod(2,2*n+1));;
    Flat(Concatenation([0],List([2..11],n->List([0..R[n]-1],k->PowerMod(2,k,2*n-1))))); # Muniru A Asiru, Feb 02 2019
  • Mathematica
    nn = 30; p = 2; t = p^Range[0, nn]; Flatten[Table[If[IntegerQ[Log[p, n]], {0}, tm = Mod[t, n]; len = Position[tm, 1, 1, 2][[-1,1]]; Take[tm, len-1]], {n, 1, nn, 2}]]

Formula

T(n, k) = 2^k mod (2*n-1), n >= 1, k = 0, 1, ..., A002326(n-1) - 1.
T(n, k) = (2*n-1)*frac(2^k/(2*n-1)), n >= 1, k = 0, 1, ..., A002326(n-1) - 1, with the fractional part frac(x) = x - floor(x). - Wolfdieter Lang, Jul 29 2020

A201912 Irregular triangle of 2^k mod prime(n).

Original entry on oeis.org

0, 1, 2, 1, 2, 4, 3, 1, 2, 4, 1, 2, 4, 8, 5, 10, 9, 7, 3, 6, 1, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1, 2, 4, 8, 16, 15, 13, 9, 1, 2, 4, 8, 16, 13, 7, 14, 9, 18, 17, 15, 11, 3, 6, 12, 5, 10, 1, 2, 4, 8, 16, 9, 18, 13, 3, 6, 12, 1, 2, 4, 8, 16, 3, 6, 12, 24
Offset: 1

Views

Author

T. D. Noe, Dec 17 2011

Keywords

Comments

The row lengths are in A014664. For n > 1, the first term of each row is 1 and the last term is 2*prime(n)-1, which is A006254. Many sequences are in this one.

Examples

			The first 11 rows are:
2:  0;
3:  1, 2;
5:  1, 2, 4, 3;
7:  1, 2, 4;
11: 1, 2, 4, 8,  5, 10,  9,  7,  3,  6;
13: 1, 2, 4, 8,  3,  6, 12, 11,  9,  5, 10,  7;
17: 1, 2, 4, 8, 16, 15, 13,  9;
19: 1, 2, 4, 8, 16, 13,  7, 14,  9, 18, 17, 15, 11,  3,  6, 12,  5, 10;
23: 1, 2, 4, 8, 16,  9, 18, 13,  3,  6, 12;
29: 1, 2, 4, 8, 16,  3,  6, 12, 24, 19,  9, 18,  7, 14, 28, 27, 25, 21, 13, 26, 23, 17, 5, 10, 20, 11, 22, 15;
31: 1, 2, 4, 8, 16;
		

Crossrefs

Cf. similar sequences of the type 2^n mod p, where p is a prime: A000034 (p=3), A070402 (p=5), A069705 (p=7), A036117 (p=11), A036118 (p=13), A062116 (p=17), A036120 (p=19), A070335 (p=23), A036122 (p=29), A269266 (p=31), A036124 (p=37), A070348 (p=41), A070349 (p=43), A070351 (p=47), A036128 (p=53), A036129 (p=59), A036130 (p=61), A036131 (p=67), A036135 (p=83), A036138 (p=101), A036140 (p=107), A036144 (p=131), A036146 (p=139), A036147 (p=149), A036150 (p=163), A036152 (p=173), A036153 (p=179), A036154 (p=181), A036157 (p=197), A036159 (p=211), A036161 (p=227).

Programs

  • GAP
    P:=Filtered([1..350],IsPrime);;
    R:=List([1..Length(P)],n->OrderMod(2,P[n]));;
    Flat(Concatenation([0],List([2..10],n->List([0..R[n]-1],k->PowerMod(2,k,P[n]))))); # Muniru A Asiru, Feb 01 2019
  • Mathematica
    nn = 10; p = 2; t = p^Range[0,Prime[nn]]; Flatten[Table[If[Mod[n, p] == 0, {0}, tm = Mod[t, n]; len = Position[tm, 1, 1, 2][[-1,1]]; Take[tm, len-1]], {n, Prime[Range[nn]]}]]

A201920 a(n) = 2^n mod 125.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 3, 6, 12, 24, 48, 96, 67, 9, 18, 36, 72, 19, 38, 76, 27, 54, 108, 91, 57, 114, 103, 81, 37, 74, 23, 46, 92, 59, 118, 111, 97, 69, 13, 26, 52, 104, 83, 41, 82, 39, 78, 31, 62, 124, 123, 121, 117, 109, 93, 61, 122, 119, 113, 101, 77, 29
Offset: 0

Views

Author

Franz Vrabec, Dec 06 2011

Keywords

Examples

			a(7) = 2^7 mod 125 = 3.
		

Crossrefs

Programs

Formula

For n > 50: a(n) = a(n-1) - a(n-50) + a(n-51).
G.f.: (1 + x + 2x^2 + 4x^3 + 8x^4 + 16x^5 + 32x^6 - 61x^7 + 3x^8 + 6x^9 + 12x^10 + 24x^11 + 48x^12 - 29x^13 - 58x^14 + 9x^15 + 18x^16 + 36x^17 - 53x^18 + 19x^19 + 38x^20 - 49x^21 + 27x^22 + 54x^23 - 17x^24 - 34x^25 + 57x^26 - 11x^27 - 22x^28 - 44x^29 + 37x^30 - 51x^31 + 23x^32 + 46x^33 - 33x^34 + 59x^35 - 7x^36 - 14x^37 - 28x^38 - 56x^39 + 13x^40 + 26x^41 + 52x^42 - 21x^43 - 42x^44 + 41x^45 - 43x^46 + 39x^47 - 47x^48 + 31x^49 + 63x^50) / ((1-x)*(1+x^2)*(1 - x^2 + x^4 - x^6 + x^8 - x^10 + x^12 - x^14 + x^16 - x^18 + x^20 - x^22 + x^24 - x^26 + x^28 - x^30 + x^32 - x^34 + x^36 - x^38 + x^40 - x^42 + x^44 - x^46 + x^48)).
Periodic with period 100.

A269266 a(n) = 2^n mod 31.

Original entry on oeis.org

1, 2, 4, 8, 16, 1, 2, 4, 8, 16, 1, 2, 4, 8, 16, 1, 2, 4, 8, 16, 1, 2, 4, 8, 16, 1, 2, 4, 8, 16, 1, 2, 4, 8, 16, 1, 2, 4, 8, 16, 1, 2, 4, 8, 16, 1, 2, 4, 8, 16, 1, 2, 4, 8, 16, 1, 2, 4, 8, 16, 1, 2, 4, 8, 16, 1, 2, 4, 8, 16, 1, 2, 4, 8, 16, 1, 2, 4, 8, 16, 1
Offset: 0

Views

Author

Vincenzo Librandi, Mar 31 2016

Keywords

References

  • Continued fraction expansion of (1651+sqrt(3236405))/2386. - Bruno Berselli, Mar 31 2016

Crossrefs

Cf. A201912 (11th row of the triangle).
Cf. similar sequences of the type 2^n mod p, where p is a prime: A000034 (p=3), A070402 (p=5), A069705 (p=7), A036117 (p=11), A036118 (p=13), A062116 (p=17), A036120 (p=19), A070335 (p=23), A036122 (p=29), this sequence (p=31), A036124 (p=37), A070348 (p=41), A070349 (p=43), A070351 (p=47), A036128 (p=53), A036129 (p=59), A036130 (p=61), A036131 (p=67).

Programs

  • GAP
    List([0..70],n->PowerMod(2,n,31)); # Muniru A Asiru, Jan 30 2019
  • Magma
    [Modexp(2, n, 31): n in [0..100]];
    
  • Magma
    &cat [[1,2,4,8,16]^^20] // Bruno Berselli, Mar 31 2016
    
  • Mathematica
    PowerMod[2, Range[0, 100], 31]
  • PARI
    a(n)=2^(n%5) \\ Charles R Greathouse IV, Mar 31 2016
    
  • PARI
    x='x+O('x^99); Vec((1+2*x+4*x^2+8*x^3+16*x^4)/(1-x^5)) \\ Altug Alkan, Mar 31 2016
    
  • Python
    for n in range(0,100):print(2**n%31) # Soumil Mandal, Apr 03 2016
    
  • Python
    def A269266(n): return pow(2,n,31) # Chai Wah Wu, Jan 03 2022
    
  • Sage
    [2^mod(n,5) for n in (0..100)] # Bruno Berselli, Mar 31 2016
    

Formula

G.f.: (1 + 2*x + 4*x^2 + 8*x^3 + 16*x^4)/(1 - x^5).
a(n) = a(n-5).
a(n) = 2^(n mod 5). - Bruno Berselli, Mar 31 2016

A349767 Numbers m such that 2^m - m is divisible by 5.

Original entry on oeis.org

3, 14, 16, 17, 23, 34, 36, 37, 43, 54, 56, 57, 63, 74, 76, 77, 83, 94, 96, 97, 103, 114, 116, 117, 123, 134, 136, 137, 143, 154, 156, 157, 163, 174, 176, 177, 183, 194, 196, 197, 203, 214, 216, 217, 223, 234, 236, 237, 243, 254, 256, 257, 263, 274, 276, 277, 283, 294, 296, 297, 303
Offset: 1

Views

Author

Bernard Schott, Dec 10 2021

Keywords

Comments

For every prime p, there are infinitely many numbers m such that 2^m - m (A000325) is divisible by p, here are numbers m corresponding to p = 5.
Equivalently, numbers that are congruent to {3, 14, 16, 17, 23, 34, 36, 37, 43, 54, 56, 57} mod 60, <==> numbers that are congruent to {+-3, +-14, +-16, +-17, +-23, +-34} mod 60.

References

  • Michael Doob, The Canadian Mathematical Olympiad & L'Olympiade Mathématique du Canada 1969-1993, Canadian Mathematical Society & Société Mathématique du Canada, Problem 4, 1983, page 158, 1993.

Crossrefs

Similar with: A299174 (p = 2), A047257 (p = 3), this sequence (p = 5).

Programs

  • Maple
    filter:= n -> 2^n-n mod 5 = 0 : select(filter, [$1..400]);
  • Mathematica
    Select[Range[300], PowerMod[2, #, 5] == Mod[#, 5] &] (* Amiram Eldar, Dec 10 2021 *)
  • PARI
    isok(m) = Mod(2, 5)^m == Mod(m, 5); \\ Michel Marcus, Dec 10 2021
    
  • Python
    def ok(n): return pow(2, n, 5) == n%5
    print([k for k in range(357) if ok(k)]) # Michael S. Branicky, Dec 10 2021
Showing 1-6 of 6 results.