cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A004987 a(n) = (3^n/n!)*Product_{k=0..n-1} (3*k + 1). 3-central binomial coefficients.

Original entry on oeis.org

1, 3, 18, 126, 945, 7371, 58968, 480168, 3961386, 33011550, 277297020, 2344420260, 19927572210, 170150808870, 1458435504600, 12542545339560, 108179453553705, 935434098376155, 8107095519260010, 70403724246205350, 612512400941986545, 5337608065351597035, 46582761297613937760
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

Diagonal of rational function R(x,y) = (1 - 9*x*y) / (1 - 2*x - 3*y + 3*y^2 + 9*x^2*y). - Gheorghe Coserea, Jul 01 2016
This is the k = 3 variant of the k-central binomial coefficients c(n,k) with g.f. (1 - k^2*x)^(-1/k), which yield the usual central binomial coefficients A001405 for k = 2. - M. F. Hasler, Nov 12 2024

Examples

			G.f.: 1 + 3*x + 18*x^2 + 126*x^3 + 945*x^4 + 7371*x^5 + 58968*x^6 + 480168*x^7 + ...
		

Crossrefs

Related to diagonal of rational functions: A268545-A268555.

Programs

  • GAP
    List([0..25], n-> 3^n*Product([0..n-1], k-> 3*k+1)/Factorial(n) ); # G. C. Greubel, Aug 22 2019
  • Magma
    [1] cat [3^n*&*[3*k+1: k in [0..n-1]]/Factorial(n): n in [1..25]]; // G. C. Greubel, Aug 22 2019
    
  • Maple
    a:= n-> (3^n/n!)*mul(3*k+1, k=0..n-1); seq(a(n), n=0..25); # G. C. Greubel, Aug 22 2019
  • Mathematica
    Table[(-9)^n Binomial[-1/3, n], {n, 0, 25}] (* Jean-François Alcover, Sep 28 2016, after Peter Luschny *)
  • PARI
    a(n) = prod(k=0, n-1, 3*k + 1)*3^n/n! \\ Michel Marcus, Jun 30 2013
    
  • PARI
    my(x='x, y='y);
    R = (1 - 9*x*y) / (1 - 2*x - 3*y + 3*y^2 + 9*x^2*y);
    diag(n, expr, var) = {
      my(a = vector(n));
      for (i = 1, #var, expr = taylor(expr, var[#var - i + 1], n));
      for (k = 1, n, a[k] = expr;
           for (i = 1, #var, a[k] = polcoeff(a[k], k-1)));
      return(a);
    };
    diag(20, R, [x,y])  \\ Gheorghe Coserea, Jul 01 2016
    
  • PARI
    Vec((1-9*x+O(x^25))^(-1/3)) \\ yields the same as:
    apply( {A004987(n)=prod(k=0, n-1, 9*k+3)\n!}, [0..24]) \\ M. F. Hasler, Nov 12 2024
    
  • Sage
    [9^n*rising_factorial(1/3, n)/factorial(n) for n in (0..25)] # G. C. Greubel, Aug 22 2019
    

Formula

G.f.: (1 - 9*x)^(-1/3).
a(n) = (3^n/n!)*A007559(n), n >= 1, a(0) := 1.
a(n) ~ Gamma(1/3)^-1*n^(-2/3)*3^(2*n)*{1 - 1/9*n^-1 + ...}.
Representation as n-th moment of a positive function on (0, 9): a(n) = Integral_{x=0..9} ( x^n*(1/(Pi*sqrt(3)*6*(x/9)^(2/3)*(1-x/9)^(1/3))) ), n >= 0. This function is the solution of the Hausdorff moment problem on (0, 9) with moments equal to a(n). As a consequence this representation is unique. - Karol A. Penson, Jan 30 2003
D-finite with recurrence: n*a(n) + 3*(2-3*n)*a(n-1)=0. - R. J. Mathar, Jun 07 2013
0 = a(n) * (81*a(n+1) - 15*a(n+2)) + a(n+1) * (-3*a(n+1) + a(n+2)) for all n in Z. - Michael Somos, Jan 27 2014
G.f. A(x)=:y satisfies 0 = y'' * y - 4 * y' * y'. - Michael Somos, Jan 27 2014
a(n) = (-9)^n*binomial(-1/3, n). - Peter Luschny, Mar 23 2014
E.g.f.: is the hypergeometric function of type 1F1, in Maple notation hypergeom([1/3], [1], 9*x). - Karol A. Penson, Dec 19 2015
Sum_{n>=0} 1/a(n) = (sqrt(3)*Pi + 3*(12 + log(3)))/32 = 1.3980385924595932... - Ilya Gutkovskiy, Jul 01 2016
Binomial transform of A216316. - Peter Bala, Jul 02 2023
From Peter Bala, Mar 31 2024: (Start)
a(n) = (9^n)*Sum_{k = 0..2*n} (-1)^k*binomial(-1/3, k)* binomial(-1/3, 2*n - k).
(9^n)*a(n) = Sum_{k = 0..2*n} (-1)^k*a(k)*a(2*n-k).
Sum_{k = 0..n} a(k)*a(n-k) = A004988(n).
Sum_{k = 0..2*n} a(k)*a(2*n-k) = 18^n/(2*n)! * Product_{k = 1..n} (6*k - 1)*(3*k - 2). (End)
G.f. A(x) satisfies A(x) = 1/A(-x*A(x)^3). - Seiichi Manyama, Jun 20 2025

Extensions

More terms from Ralf Stephan, Mar 13 2004
More terms from Benoit Cloitre, Jun 05 2004

A004117 Numerators of expansion of (1-x)^(-1/3).

Original entry on oeis.org

1, 1, 2, 14, 35, 91, 728, 1976, 5434, 135850, 380380, 1071980, 9111830, 25933670, 74096200, 637227320, 1832028545, 5280552865, 137294374490, 397431084050, 1152550143745, 10043651252635, 29217894553120, 85112997176480
Offset: 0

Views

Author

Keywords

Comments

For n >= 1, a(n) is also the numerator of beta(n+1/3,2/3)*sqrt(27)/(2*Pi). - Groux Roland, May 17 2011

Crossrefs

Programs

  • Mathematica
    Table[Numerator[Binomial[-1/3,n] (-1)^n],{n,0,40}] (* Vincenzo Librandi, Jun 13 2012 *)
  • PARI
    a(n)=prod(k=1,n,3*k-2)/n!*3^sum(k=1,n,valuation(k,3))

Formula

(1/n!) * 3^A054861(n) * Product_{k=0..n-1} (3k+1). - Ralf Stephan, Mar 13 2004
Numerators in (1-3t)^(-1/3) = 1 + t + 2*t^2 + (14/3)*t^3 + (35/3)*t^4 + (91/3)*t^5 + (728/9)*t^6 + (1976/9)*t^7 + (5434/9)*t^8 + ... = 1 + t + 4*t^2/2! + 28*t^3/3! + 280*t^4/4! + 3640*t^5/5! + 58240*t^6/6! + ... = e.g.f. for triple factorials A007559 (cf. A094638). - Tom Copeland, Dec 04 2013

Extensions

Typo in formula fixed by Pontus von Brömssen, Nov 25 2008
Showing 1-2 of 2 results.