cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A001597 Perfect powers: m^k where m > 0 and k >= 2.

Original entry on oeis.org

1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, 128, 144, 169, 196, 216, 225, 243, 256, 289, 324, 343, 361, 400, 441, 484, 512, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1000, 1024, 1089, 1156, 1225, 1296, 1331, 1369, 1444, 1521, 1600, 1681, 1728, 1764
Offset: 1

Views

Author

Keywords

Comments

Might also be called the nontrivial powers. - N. J. A. Sloane, Mar 24 2018
See A175064 for number of ways to write a(n) as m^k (m >= 1, k >= 1). - Jaroslav Krizek, Jan 23 2010
a(1) = 1, for n >= 2: a(n) = numbers m such that sum of perfect divisors of x = m has no solution. Perfect divisor of n is divisor d such that d^k = n for some k >= 1. a(n) for n >= 2 is complement of A175082. - Jaroslav Krizek, Jan 24 2010
A075802(a(n)) = 1. - Reinhard Zumkeller, Jun 20 2011
Catalan's conjecture (now a theorem) is that 1 occurs just once as a difference, between 8 and 9.
For a proof of Catalan's conjecture, see the paper by Metsänkylä. - L. Edson Jeffery, Nov 29 2013
m^k is the largest number n such that (n^k-m)/(n-m) is an integer (for k > 1 and m > 1). - Derek Orr, May 22 2014
From Daniel Forgues, Jul 22 2014: (Start)
a(n) is asymptotic to n^2, since the density of cubes and higher powers among the squares and higher powers is 0. E.g.,
a(10^1) = 49 (49% of 10^2),
a(10^2) = 6400 (64% of 10^4),
a(10^3) = 804357 (80.4% of 10^6),
a(10^4) = 90706576 (90.7% of 10^8),
a(10^n) ~ 10^(2n) - o(10^(2n)). (End)
A proper subset of A001694. - Robert G. Wilson v, Aug 11 2014
a(10^n): 1, 49, 6400, 804357, 90706576, 9565035601, 979846576384, 99066667994176, 9956760243243489, ... . - Robert G. Wilson v, Aug 15 2014

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 66.
  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section D9.
  • René Schoof, Catalan's Conjecture, Springer-Verlag, 2008, p. 1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Complement of A007916.
Subsequence of A072103; A072777 is a subsequence.
Union of A075109 and A075090.
There are four different sequences which may legitimately be called "prime powers": A000961 (p^k, k >= 0), A246655 (p^k, k >= 1), A246547 (p^k, k >= 2), A025475 (p^k, k=0 and k >= 2), and which are sometimes confused with the present sequence.
First differences give A053289.

Programs

  • Haskell
    import Data.Map (singleton, findMin, deleteMin, insert)
    a001597 n = a001597_list !! (n-1)
    (a001597_list, a025478_list, a025479_list) =
       unzip3 $ (1, 1, 2) : f 9 (3, 2) (singleton 4 (2, 2)) where
       f zz (bz, ez) m
        | xx < zz = (xx, bx, ex) :
                    f zz (bz, ez+1) (insert (bx*xx) (bx, ex+1) $ deleteMin m)
        | xx > zz = (zz, bz, 2) :
                    f (zz+2*bz+1) (bz+1, 2) (insert (bz*zz) (bz, 3) m)
        | otherwise = f (zz+2*bz+1) (bz+1, 2) m
        where (xx, (bx, ex)) = findMin m  --  bx ^ ex == xx
    -- Reinhard Zumkeller, Mar 28 2014, Oct 04 2012, Apr 13 2012
    
  • Magma
    [1] cat [n : n in [2..1000] | IsPower(n) ];
    
  • Maple
    isA001597 := proc(n)
        local e ;
        e := seq(op(2,p),p=ifactors(n)[2]) ;
        return ( igcd(e) >=2 or n =1 ) ;
    end proc:
    A001597 := proc(n)
        option remember;
        local a;
        if n = 1 then
            1;
        else
            for a from procname(n-1)+1 do
                if isA001597(a) then
                    return a ;
                end if;
             end do;
        end if;
    end proc:
    seq(A001597(n),n=1..70) ; # R. J. Mathar, Jun 07 2011
    N:= 10000: # to get all entries <= N
    sort({1,seq(seq(a^b, b = 2 .. floor(log[a](N))), a = 2 .. floor(sqrt(N)))}); # Robert FERREOL, Jul 18 2023
  • Mathematica
    min = 0; max = 10^4;  Union@ Flatten@ Table[ n^expo, {expo, Prime@ Range@ PrimePi@ Log2@ max}, {n, Floor[1 + min^(1/expo)], max^(1/expo)}] (* T. D. Noe, Apr 18 2011; slightly modified by Robert G. Wilson v, Aug 11 2014 *)
    perfectPowerQ[n_] := n == 1 || GCD @@ FactorInteger[n][[All, 2]] > 1; Select[Range@ 1765, perfectPowerQ] (* Ant King, Jun 29 2013; slightly modified by Robert G. Wilson v, Aug 11 2014 *)
    nextPerfectPower[n_] := If[n == 1, 4, Min@ Table[ (Floor[n^(1/k)] + 1)^k, {k, 2, 1 + Floor@ Log2@ n}]]; NestList[ nextPerfectPower, 1, 55] (* Robert G. Wilson v, Aug 11 2014 *)
    Join[{1},Select[Range[2000],GCD@@FactorInteger[#][[All,2]]>1&]] (* Harvey P. Dale, Apr 30 2018 *)
  • PARI
    {a(n) = local(m, c); if( n<2, n==1, c=1; m=1; while( cMichael Somos, Aug 05 2009 */
    
  • PARI
    is(n)=ispower(n) || n==1 \\ Charles R Greathouse IV, Sep 16 2015
    
  • PARI
    list(lim)=my(v=List(vector(sqrtint(lim\=1),n,n^2))); for(e=3,logint(lim,2), for(n=2,sqrtnint(lim,e), listput(v,n^e))); Set(v) \\ Charles R Greathouse IV, Dec 10 2019
    
  • Python
    from sympy import perfect_power
    def ok(n): return n==1 or perfect_power(n)
    print([m for m in range(1, 1765) if ok(m)]) # Michael S. Branicky, Jan 04 2021
    
  • Python
    import sympy
    class A001597() :
        def _init_(self) :
            self.a = [1]
        def at(self, n):
            if n <= len(self.a):
                return self.a[n-1]
            else:
                cand = self.at(n-1)+1
                while sympy.perfect_power(cand) == False:
                    cand += 1
                self.a.append(cand)
                return cand
    a001597 = A001597()
    for n in range(1,20):
        print(a001597.at(n)) # R. J. Mathar, Mar 28 2023
    
  • Python
    from sympy import mobius, integer_nthroot
    def A001597(n):
        def f(x): return int(n-2+x+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length())))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 13 2024
  • Sage
    def A001597_list(n) :
        return [k for k in (1..n) if k.is_perfect_power()]
    A001597_list(1764) # Peter Luschny, Feb 03 2012
    

Formula

Goldbach showed that Sum_{n >= 2} 1/(a(n)-1) = 1.
Formulas from postings to the Number Theory List by various authors, 2002:
Sum_{i >= 2} Sum_{j >= 2} 1/i^j = 1;
Sum_{k >= 2} 1/(a(k)+1) = Pi^2 / 3 - 5/2;
Sum_{k >= 2} 1/a(k) = Sum_{n >= 2} mu(n)(1- zeta(n)) approx = 0.87446436840494... See A072102.
For asymptotics see Newman.
For n > 1: gcd(exponents in prime factorization of a(n)) > 1, cf. A124010. - Reinhard Zumkeller, Apr 13 2012
a(n) ~ n^2. - Thomas Ordowski, Nov 04 2012
a(n) = n^2 - 2*n^(5/3) - 2*n^(7/5) + (13/3)*n^(4/3) - 2*n^(9/7) + 2*n^(6/5) - 2*n^(13/11) + o(n^(13/11)) (Jakimczuk, 2012). - Amiram Eldar, Jun 30 2023

Extensions

Minor corrections from N. J. A. Sloane, Jun 27 2010

A075109 Odd perfect powers (1 together with numbers m^k, m odd, k >= 2).

Original entry on oeis.org

1, 9, 25, 27, 49, 81, 121, 125, 169, 225, 243, 289, 343, 361, 441, 529, 625, 729, 841, 961, 1089, 1225, 1331, 1369, 1521, 1681, 1849, 2025, 2187, 2197, 2209, 2401, 2601, 2809, 3025, 3125, 3249, 3375, 3481, 3721, 3969, 4225, 4489, 4761, 4913, 5041, 5329, 5625
Offset: 1

Views

Author

Zak Seidov, Oct 11 2002

Keywords

Crossrefs

Intersection of A001597 and A005408.

Programs

  • Haskell
    a075109 n = a075109_list !! (n-1)
    a075109_list = filter odd a001597_list  -- Reinhard Zumkeller, Oct 04 2012
    
  • Magma
    [1] cat [n : n in [3..6000 by 2] | IsPower(n) ]; // Vincenzo Librandi, Mar 31 2014
    
  • Maple
    q:= n-> n=1 or n::odd and igcd(seq(i[2], i=ifactors(n)[2]))>1:
    select(q, [$1..6000])[];  # Alois P. Heinz, May 04 2022
  • Mathematica
    Take[Union[Flatten[Table[a^b, {a, 1, 99, 2}, {b, 2, 15}]]], 50] (* Alonso del Arte, Nov 22 2011 *)
  • PARI
    isok(m) = (m==1) || ((m%2) && ispower(m)); \\ Michel Marcus, May 04 2022
    
  • Python
    from sympy import mobius, integer_nthroot
    def A075109(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n-1+x+sum(mobius(k)*((integer_nthroot(x,k)[0]+1>>1)-1) for k in range(2,x.bit_length())))
        return bisection(f,n,n) # Chai Wah Wu, Feb 25 2025

Formula

Sum_{n>=1} 1/a(n) = 1 + Sum_{k>=2} mu(k)*(1-zeta(k)*(2^k-1)/2^k) = 1.2890375574... - Amiram Eldar, Dec 19 2020

Extensions

Definition clarified by N. J. A. Sloane, Dec 25 2021

A259362 a(1) = 1, for n > 1: a(n) is the number of ways to write n as a nontrivial perfect power.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Doug Bell, Jun 24 2015

Keywords

Comments

a(n) = number of integer pairs (i,j) for distinct values of i where i > 0, j > 1 and n = i^j. Since 1 = 1^r for all real values of r, the requirement for a distinct i causes a(1) = 1 instead of a(1) = infinity.
Alternatively, the sequence can be defined as: a(1) = 1, for n > 1: a(n) = number of pairs (i,j) such that i > 0, j > 1 and n = i^j.
A007916 = n, where a(n) = 0.
A001597 = n, where a(n) > 0.
A175082 = n, where n = 1 or a(n) = 0.
A117453 = n, where n = 1 or a(n) > 1.
A175065 = n, where n > 1 and a(n) > 0 and this is the first occurrence in this sequence of a(n).
A072103 = n repeated a(n) times where n > 1.
A075802 = min(1, a(n)).
A175066 = a(n), where n = 1 or a(n) > 1. This sequence is an expansion of A175066.
A253642 = 0 followed by a(n), where n > 1 and a(n) > 0.
A175064 = a(1) followed by a(n) + 1, where n > 1 and a(n) > 0.
Where n > 1, A001597(x) = n (which implies a(n) > 0), i = A025478(x) and j = A253641(n), then a(n) = A000005(j) - 1, which is the number of factors of j greater than 1. The integer pair (i,j) comprises the smallest value i and the largest value j where i > 0, j > 1 and n = i^j. The a(n) pairs of (a,b) where a > 0, b > 1 and n = a^b are formed with b = each of the a(n) factors of j greater than 1. Examples for n = {8,4096}:
a(8) = 1, A001597(3) = 8, A025478(3) = 2, A253641(8) = 3, 8 = 2^3 and A000005(3) - 1 = 1 because there is one factor of 3 greater than 1 [3]. The set of pairs (a,b) is {(2,3)}.
a(4096) = 5, A001597(82) = 4096, A025478(82) = 2, A253641(4096) = 12, 4096 = 2^12 and A000005(12) - 1 = 5 because there are five factors of 12 greater than 1 [2,3,4,6,12]. The set of pairs (a,b) is {(64,2),(16,3),(8,4),(4,6),(2,12)}.
A023055 = the ordered list of x+1 with duplicates removed, where x is the number of consecutive zeros appearing in this sequence between any two nonzero terms.
A070428(x) = number of terms a(n) > 0 where n <= 10^x.
a(n) <= A188585(n).

Examples

			a(6) = 0 because there is no way to write 6 as a nontrivial perfect power.
a(9) = 1 because there is one way to write 9 as a nontrivial perfect power: 3^2.
a(16) = 2 because there are two ways to write 16 as a nontrivial perfect power: 2^4, 4^2.
From _Friedjof Tellkamp_, Jun 14 2025: (Start)
n:       1, 2, 3, 4, 5, 6, 7, 8, 9, ...
Squares: 1, 0, 0, 1, 0, 0, 0, 0, 1, ... (A010052)
Cubes:   1, 0, 0, 0, 0, 0, 0, 1, 0, ... (A010057)
...
Sum:    oo, 0, 0, 1, 0, 0, 0, 1, 1, ...
a(1)=1:  1, 0, 0, 1, 0, 0, 0, 1, 1, ... (= this sequence). (End)
		

Crossrefs

Programs

  • Mathematica
    a[n_] := If[n == 1, 1, Sum[Boole[IntegerQ[n^(1/k)]], {k, 2, Floor[Log[2, n]]}]]; Array[a, 100] (* Friedjof Tellkamp, Jun 14 2025 *)
    a[n_] := If[n == 1, 1, DivisorSigma[0, Apply[GCD, Transpose[FactorInteger[n]][[2]]]] - 1]; Array[a, 100] (* Michael Shamos, Jul 06 2025 *)
  • PARI
    a(n) = if (n==1, 1, sum(i=2, logint(n, 2), ispower(n, i))); \\ Michel Marcus, Apr 11 2025

Formula

a(1) = 1, for n > 1: a(n) = A000005(A253641(n)) - 1.
If n not in A001597, then a(n) = 0, otherwise a(n) = A175064(x) - 1 where A001597(x) = n.
From Friedjof Tellkamp, Jun 14 2025: (Start)
a(n) = A089723(n) - 1, for n > 1.
a(n) = A010052(n) + A010057(n) + A374016(n) + (...), for n > 1.
Sum_{k>=2..n} a(k) = A089361(n), for n > 1.
G.f.: x + Sum_{j>=2, k>=2} x^(j^k).
Dirichlet g.f.: 1 + Sum_{k>=2} zeta(k*s)-1. (End)

A353152 Perfect powers that are divisible by 5.

Original entry on oeis.org

25, 100, 125, 225, 400, 625, 900, 1000, 1225, 1600, 2025, 2500, 3025, 3125, 3375, 3600, 4225, 4900, 5625, 6400, 7225, 8000, 8100, 9025, 10000, 11025, 12100, 13225, 14400, 15625, 16900, 18225, 19600, 21025, 22500, 24025, 25600, 27000, 27225, 28900, 30625
Offset: 1

Views

Author

Marco Ripà, Apr 26 2022

Keywords

Comments

a(n) == 0 (mod 25).
a(n) == {0, 25, 75} (mod 100).

Examples

			225 is a term since 225 = 15^2 is a power of a multiple of 5.
		

Crossrefs

Intersection of A001597 and A008587.
Cf. A075090 (even perfect powers).

Programs

  • Mathematica
    Select[Range[32000], And[GCD @@ FactorInteger[#][[All, 2]] > 1, Divisible[#, 5]] &] (* Michael De Vlieger, Apr 30 2022 *)
  • PARI
    isok(k) = ispower(k) && !(k%5); \\ Michel Marcus, Apr 27 2022
    
  • PARI
    upto(n) = { my(res = List()); forstep(i = 5, sqrtint(n), 5, c = i; for(e = 2, logint(n, i), c*=i; listput(res, c) ) ); Set(res) } \\ David A. Corneth, Apr 27 2022

Formula

a(n) = (5*m)^k for some positive m and some k > 1. - David A. Corneth, Apr 28 2022
Sum_{n>=1} 1/a(n) = -Sum_{k>=2} mu(k)*zeta(k)/5^k = 0.0756933503... - Amiram Eldar, Jul 02 2022

A123995 First occurrence of prime gaps which are perfect powers.

Original entry on oeis.org

2, 7, 89, 1831, 5591, 9551, 89689, 396733, 3851459, 11981443, 70396393, 202551667, 1872851947, 10958687879, 47203303159, 767644374817, 1999066711391, 8817792098461, 78610833115261, 497687231721157, 2069461000669981
Offset: 1

Views

Author

Walter Kehowski, Oct 31 2006

Keywords

Comments

So far the powers have occurred in numerical order. Here is the list of primes and powers: [7, 4], [89, 8], [1831, 16], [5591, 32], [9551, 36], [89689, 64], [396733, 100], [3851459, 128], [11981443, 144], [70396393, 196], [202551667, 216], [1872851947, 256], [10958687879, 324]. I have searched out to the prime p=26689111613.
The old definition was confusing. What is meant was: primes p such that nextprime(p)-p is an element of A001597 (or A075090: even perfect powers, for n > 1), and p is the smallest prime followed by this gap. - M. F. Hasler, Oct 18 2018
A138198 is a subsequence. - M. F. Hasler, Oct 18 2018

Examples

			a(2)=89 since nextprime(89)-89=97-89=8 is the first occurrence of 8 as a difference between successive primes.
		

Crossrefs

Cf. A080370, A113472, A000230, A001597 (perfect powers), A075090, A002386, A138198.

Programs

  • Maple
    with(numtheory); egcd := proc(n::posint) local L; if n>1 then L:=ifactors(n)[2]; L:=map(z->z[2],L); return igcd(op(L)) else return 1 fi end: P:={}; Q:=[]; p:=2; for w to 1 do for k from 0 do # keep track if k mod 10^6 = 0 then print(k,p) fi; lastprime:=p; q:=nextprime(p); d:=q-p; x:=egcd(d); if x>1 and not d in P then P:=P union {d}; Q:=[op(Q), [p,d]]; print(p,d); print(P); print(Q); fi ; p:=q; od od; # let it run with AutoSave enabled.
  • Mathematica
    NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ@k, k++ ]; k]; perfectPowerQ[x_] := GCD @@ Last /@ FactorInteger@x > 1; dd = {1}; pp = {2}; qq = {3}; p = 3; Do[q = NextPrim@p; d = q - p; If[perfectPowerQ@d && ! MemberQ[dd, d], Print@q; AppendTo[pp, p]; AppendTo[dd, d]]; p = q, {n, 10^7}]; pp (* Robert G. Wilson v, Nov 03 2006 *)
  • PARI
    S=[];print1(p=2);forprime(q=1+p,,ispower(q-p)&& !setsearch(S,q-p)&& !print1(","p)&& S=setunion(S,[q-p]);p=q) \\ M. F. Hasler, Oct 18 2018

Formula

Previous prime before A123996.

Extensions

Edited and extended by Robert G. Wilson v, Nov 03 2006 and corrected Nov 04 2006
Better definition from M. F. Hasler, Oct 18 2018

A123996 Smallest prime q such that the gap between q and the previous prime is a perfect power that has not occurred earlier as a gap.

Original entry on oeis.org

3, 11, 97, 1847, 5623, 9587, 89753, 396833, 3851587, 11981587, 70396589, 202551883, 1872852203, 10958688203, 47203303559, 767644375301, 8817792099037, 78610833115937, 497687231721941, 2069461000670881
Offset: 1

Views

Author

Walter Kehowski, Oct 31 2006

Keywords

Comments

So far the powers have occurred in numerical order. Here is the list of primes and powers: [11, 4], [97, 8], [1847, 16], [5623, 32], [9587, 36], [89753, 64], [396833, 100], [3851587, 128], [11981587, 144], [70396589, 196], [202551883, 216], [1872852203, 256], [10958688203, 324]. I have searched out to the prime p=26689111613.

Examples

			a(2)=97 since 97-prevprime(97)=97-89=8 is the first occurrence of 8 as a difference between successive primes.
		

Crossrefs

Programs

  • Maple
    with(numtheory); egcd := proc(n::posint) local L; if n>1 then L:=ifactors(n)[2]; L:=map(z->z[2],L); return igcd(op(L)) else return 1 fi end: P:={}; Q:=[]; p:=2; for w to 1 do for k from 0 do # keep track if k mod 10^6 = 0 then print(k,p) fi; lastprime:=p; q:=nextprime(p); d:=q-p; x:=egcd(d); if x>1 and not d in P then P:=P union {d}; Q:=[op(Q), [q,d]]; print(q,d); print(P); print(Q); fi ; p:=q; od od; # let it run with AutoSave enabled.
  • Mathematica
    NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ@k, k++ ]; k]; perfectPowerQ[x_] := GCD @@ Last /@ FactorInteger@x > 1; dd = {1}; pp = {2}; qq = {3}; p = 3; Do[q = NextPrim@p; d = q - p; If[perfectPowerQ@d && !MemberQ[dd, d], Print@q; AppendTo[qq, q]; AppendTo[dd, d]]; p = q, {n, 10^7}]; qq (* Robert G. Wilson v, Nov 03 2006 *)

Formula

Next prime after A123995.

Extensions

Edited and extended by Robert G. Wilson v, Nov 03 2006, corrected Nov 04 2006
Definition corrected by M. F. Hasler, Oct 19 2018

A353238 Perfect powers that are divisible by 3.

Original entry on oeis.org

9, 27, 36, 81, 144, 216, 225, 243, 324, 441, 576, 729, 900, 1089, 1296, 1521, 1728, 1764, 2025, 2187, 2304, 2601, 2916, 3249, 3375, 3600, 3969, 4356, 4761, 5184, 5625, 5832, 6084, 6561, 7056, 7569, 7776, 8100, 8649, 9216, 9261, 9801, 10404, 11025, 11664, 12321
Offset: 1

Views

Author

Marco Ripà, May 02 2022

Keywords

Comments

Terms are multiples of 9, so that a(n) == 0 (mod 9) (since no perfect power divisible by 3 can have a 3-adic valuation below 2).

Examples

			36 is a term since 36 = (2*3)^2 is a power of a multiple of 3.
		

Crossrefs

Cf. A000244.
Intersection of A001597 and A008585.
Intersection of A001597 and A008591.
Other perfect powers: A075090 (even), A075109 (odd), A353152 (multiple of 5).

Programs

  • Maple
    q:= n-> igcd(seq(i[2], i=ifactors(n)[2]))>1:
    select(q, [9*i$i=1..2000])[];  # Alois P. Heinz, May 05 2022
  • Mathematica
    Select[9*Range[1400], GCD @@ FactorInteger[#][[All, 2]] > 1 &]
  • PARI
    isok(k) = ispower(k) && !(k % 3); \\ Michel Marcus, May 02 2022

Formula

a(n) has the form (3*m)^k for some positive integer m := m(n) and some k > 1.
Sum_{n>=1} 1/a(n) = -Sum_{k>=2} mu(k)*zeta(k)/3^k = 0.2306128559... - Amiram Eldar, Jul 02 2022

A351663 Perfect powers that are divisible by 7.

Original entry on oeis.org

49, 196, 343, 441, 784, 1225, 1764, 2401, 2744, 3136, 3969, 4900, 5929, 7056, 8281, 9261, 9604, 11025, 12544, 14161, 15876, 16807, 17689, 19600, 21609, 21952, 23716, 25921, 28224, 30625, 33124, 35721, 38416, 41209, 42875, 44100, 47089, 50176, 53361, 56644
Offset: 1

Views

Author

Marco Ripà, May 04 2022

Keywords

Comments

Terms are multiples of 49, since no perfect power divisible by 7 can have a 7-adic valuation below 2.

Examples

			196 is a term since 196 = (2*7)^2 is a power of a multiple of 7.
		

Crossrefs

Intersection of A001597 and A008589.
Other perfect powers: A075090, A075109, A353238, A353152.

Programs

  • Maple
    q:= n-> igcd(seq(i[2], i=ifactors(n)[2]))>1:
    select(q, [49*i$i=1..2000])[];  # Alois P. Heinz, May 05 2022
  • Mathematica
    Select[49*Range[1200], GCD @@ FactorInteger[#][[All, 2]] > 1 &]
  • PARI
    isok(k) = ispower(k) && !(k % 7)

Formula

a(n) has the form (7*m)^k for some m > 0 and k > 1.
Sum_{n>=1} 1/a(n) = -Sum_{k>=2} mu(k)*zeta(k)/7^k = 0.0371288923... - Amiram Eldar, Jul 02 2022

A373077 Perfect powers that are sandwiched between squarefree numbers.

Original entry on oeis.org

4, 16, 32, 36, 128, 144, 196, 216, 256, 400, 484, 900, 1156, 1296, 1600, 1728, 1764, 2048, 2704, 2916, 3136, 3364, 3600, 4356, 5184, 6084, 7056, 7396, 7744, 8100, 8192, 8464, 8836, 9216, 10404, 10816, 11236, 11664, 12100, 12544, 12996, 16384, 16900, 19044, 19600
Offset: 1

Views

Author

Massimo Kofler, May 22 2024

Keywords

Comments

All terms are even numbers.

Examples

			4 = 2^2 (between 3 which is a prime number and 5 which is a prime number).
16 = 2^4 (between 15 = 3 * 5 and 17 which is a prime number).
32 = 2^5 (between 31 which is a prime number and 33 = 3 * 11).
36 = 2^2 * 3^2 (between 35 = 5 * 7 and 37 which is a prime number).
		

Crossrefs

Intersection of A001597 (or A075090) and A067874.
Cf. A005117.

Programs

  • Maple
    N:= 10^5:
    S:= {}:
    for n from 2 to isqrt(N) by 2 do
      for k from 2 do
        m:= n^k;
        if m > N then break fi;
        if numtheory:-issqrfree(m-1) and numtheory:-issqrfree(m+1) then S:= S union {m} fi
    od od:
    sort(convert(S,list)); # Robert Israel, May 22 2024
  • Mathematica
    Select[Range[4,20000,4], GCD @@ FactorInteger[#][[;; , 2]] > 1 && And @@ SquareFreeQ /@ (# + {-1, 1}) &] (* Amiram Eldar, May 22 2024 *)
  • PARI
    isok(k) = ispower(k) && issquarefree(k-1) && issquarefree(k+1); \\ Michel Marcus, May 22 2024

A373287 Perfect powers such that the two numbers before and the two numbers after are squarefree.

Original entry on oeis.org

4, 32, 36, 144, 216, 256, 400, 900, 1156, 1296, 1728, 1764, 2704, 2916, 3136, 3600, 4356, 5184, 6084, 7056, 8100, 8464, 9216, 11236, 12100, 12996, 16384, 19044, 20164, 20736, 22500, 25600, 26244, 26896, 31684, 32400, 36864, 38416, 39204, 40000, 41616, 44100, 45796, 46656
Offset: 1

Views

Author

Massimo Kofler, May 31 2024

Keywords

Comments

All terms are multiples of 4.

Examples

			4 = 2^2 (between 2 which is a prime number, 3 which is a prime number and 5 which is a prime number, 6 = 2 * 3).
32 = 2^5 (between 30 = 2 * 3 * 5, 31 which is a prime number and 33 = 3 * 11, 34 = 2 * 17).
36 = 2^2 * 3^2 (between 34 = 2 * 17, 35 = 5 * 7 and 37 which is a prime number, 38 = 2 * 19).
		

Crossrefs

Subsequence of A372783.

Programs

  • Mathematica
    Select[Range[50000], GCD @@ FactorInteger[#][[;; , 2]] > 1 && And @@ SquareFreeQ /@ (# + {-2, -1, 1, 2}) &] (* Amiram Eldar, May 31 2024 *)
Showing 1-10 of 11 results. Next