cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A002489 a(n) = n^(n^2), or (n^n)^n.

Original entry on oeis.org

1, 1, 16, 19683, 4294967296, 298023223876953125, 10314424798490535546171949056, 256923577521058878088611477224235621321607, 6277101735386680763835789423207666416102355444464034512896, 196627050475552913618075908526912116283103450944214766927315415537966391196809
Offset: 0

Views

Author

Keywords

Comments

The number of closed binary operations on a set of order n. Labeled groupoids.
The values of "googol" in base N: "10^100" in base 2 is 2^4=16; "10^100" in base 3 is 3^9=19683, etc. This is N^^3 by the "lower-valued" (left-associative) definition of the hyper4 or tetration operator (see Munafo webpage). - Robert Munafo, Jan 25 2010
n^(n^k) = (((n^n)^n)^...)^n, with k+1 n's, k >= 0. - Daniel Forgues, May 18 2013

Examples

			a(3) = 19683 because (3^3)^3 = 3^(3^2) = 19683.
		

References

  • John S. Rose, A Course on Group Theory, Camb. Univ. Press, 1978, see p. 6.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = A079172(n) + A023814(n) = A079176(n) + A079179(n);
a(n) = A079182(n) + A023813(n) = A079186(n) + A079189(n);
a(n) = A079192(n) + A079195(n) + A079198(n) + A023815(n).

Programs

Formula

a(n) = [x^(n^2)] 1/(1 - n*x). - Ilya Gutkovskiy, Oct 10 2017
Sum_{n>=1} 1/a(n) = A258102. - Amiram Eldar, Nov 11 2020

A355400 Number of n-tuples (p_1, p_2, ..., p_n) of Dyck paths of semilength n, such that each p_i is never below p_{i-1}.

Original entry on oeis.org

1, 1, 3, 30, 1001, 111384, 41314284, 51067020290, 210309203300625, 2885318087540733000, 131857099297936066411200, 20070377346929658409924542720, 10174783866874800701945612292557712, 17178820188393063395267380511228827387600, 96592800670609299321035523895170598736583965100
Offset: 0

Views

Author

Alois P. Heinz, Jun 30 2022

Keywords

Comments

Determinant of the n X n Hankel matrix whose i-th antidiagonal is filled with the n+i-th Catalan number for i = 0..2*n-2.
[ 5, 14, 42]
a(3) = det( [14, 42, 132] ) = 30.
[42, 132, 429]

Examples

			a(0) = 1:  ( ).
a(1) = 1:  (/\).
a(2) = 3:                        /\      /\    /\
           (/\/\, /\/\), (/\/\, /  \), (/  \, /  \).
G.f. = 1 + x + 3*x^2 + 30*x^3 + 1001*x^4 + 111384*x^5 + 41314284*x^6 + ... - _Michael Somos_, Jun 27 2023
		

Crossrefs

Programs

  • Maple
    a:= n-> mul(mul((i+j+2*n)/(i+j), j=i..n-1), i=1..n-1):
    seq(a(n), n=0..14);
  • Mathematica
    Join[{1}, Table[Sqrt[2*BarnesG[4*n]] * BarnesG[n] * Gamma[2*n]^(3/2) / BarnesG[3*n + 1], {n, 1, 12}]] (* Vaclav Kotesovec, Aug 26 2023 *)
  • PARI
    a(n) = prod(i=1, n-1, prod(j=i, n-1, (i+j+2*n)/(i+j))); \\ Michel Marcus, Jul 05 2022

Formula

a(n) = Product_{i=1..n-1, j=i..n-1} (i+j+2*n)/(i+j).
a(n) mod 2 = 1 <=> n in { A131577 }.
a(n) ~ exp(1/24) * 2^(1/6 - n + 8*n^2) / (sqrt(A) * n^(1/24) * 3^(9*n^2/2 - 1/12)), where A = A074962 is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Aug 26 2023

A090588 Number of labeled idempotent groupoids.

Original entry on oeis.org

1, 1, 4, 729, 16777216, 95367431640625, 221073919720733357899776, 311973482284542371301330321821976049, 374144419156711147060143317175368453031918731001856, 507528786056415600719754159741696356908742250191663887263627442114881
Offset: 0

Views

Author

Christian G. Bower, Dec 03 2003

Keywords

Crossrefs

Programs

  • Magma
    [n^(n^2 - n): n in [0..10]]; // Vincenzo Librandi, Aug 08 2015
  • Maple
    a:=n->mul(mul(sum(1, j=1..n), k=1..n), m=1..n-1): seq(a(n), n=0..8); # Zerinvary Lajos, Dec 31 2008
  • Mathematica
    Join[{1},Table[n^(n^2-n),{n,10}]] (* Harvey P. Dale, Sep 16 2013 *)
  • PARI
    a(n) = n^(n^2-n); \\ Joerg Arndt, Nov 04 2013
    
  • Ruby
    def a(n)
    ids =* (0..n-1)
    return (ids.product(ids)).reduce(1){ |accum,x|  (x[0] == x[1]) ? accum :  accum*ids.length}
    end
    # Chad Brewbaker, Nov 03 2013
    

Formula

a(n) = n^(n^2 - n).

Extensions

One additional term from Harvey P. Dale, Sep 16 2013

A030257 Number of nonisomorphic commutative idempotent groupoids.

Original entry on oeis.org

1, 1, 1, 7, 192, 82355, 653502972, 110826042515867, 479732982053513924168, 62082231641825701423422054735, 275573192431752191557427399293883120600, 47363301285150007842253190185182901101879369430257
Offset: 0

Views

Author

Christian G. Bower, Feb 15 1998, May 15 1998 and Dec 03 2003

Keywords

Crossrefs

Formula

a(n) = Sum_{1*s_1+2*s_2+...=n} (fixA[s_1, s_2, ...]/(1^s_1*s_1!*2^s_2*s2!*...)) where fixA[s_1, s_2, ...] = Product_{i>=j>=1} f(i, j, s_i, s_j) where f(i, j, s_i, s_j) = {i=j, odd} (Sum_{d|i} (d*s_d))^((i*s_i^2-s_i)/2) or {i=j, even} (Sum_{d|i} (d*s_d))^((i*s_i^2-2*s_i)/2) * (Sum_{d|i/2} (d*s_d))^s_i or {i != j} (Sum_{d|lcm(i, j)} (d*s_d))^(gcd(i, j)*s_i*s_j). - Corrected by Sean A. Irvine, Mar 27 2020
a(n) is asymptotic to (n^binomial(n-1, 2))/n! = A076113(n)/A000142(n).

A038017 Number of n-element commutative groupoids with an identity ("pointed" groupoids).

Original entry on oeis.org

1, 2, 15, 720, 409600, 3920030472, 775775333825891, 3837862827737186253664, 558740081065710564284870598075, 2755731923933734753149997221152548428020, 520996314135332606285488148844494695722050333912483
Offset: 1

Views

Author

Christian G. Bower, May 15 1998; revised Dec 05 2003

Keywords

Comments

Also number of commutative partial groupoids with n-1 elements or commutative groupoids with an absorbant (zero) element with n elements.

Crossrefs

Formula

a(n+1) = sum {1*s_1+2*s_2+...=n} (fixA[s_1, s_2, ...]/(1^s_1*s_1!*2^s_2*s2!*...)) where fixA[s_1, s_2, ...] = prod {i>=j>=1} f(i, j, s_i, s_j) where f(i, j, s_i, s_j) = {i=j, odd} (1 + sum {d|i} (d*s_d))^((i*s_i^2+s_i)/2) or {i=j, even} (1 + sum {d|i} (d*s_d))^(i*s_i^2/2) * (1 + sum {d|i/2} (d*s_d))^s_i or {i != j} (1 + sum {d|lcm(i, j)} (d*s_d))^(2*gcd(i, j)*s_i*s_j)
a(n) asymptotic to (n^binomial(n, 2)+1)/n! = A090599(n)/A000142(n) = A076113(n)/A000142(n-1)

A076112 Triangle (read by rows) in which the n-th row contains first n terms of n geometric progression with first term 1 and common ratio (n-1).

Original entry on oeis.org

1, 1, 2, 1, 3, 9, 1, 4, 16, 64, 1, 5, 25, 125, 625, 1, 6, 36, 216, 1296, 7776, 1, 7, 49, 343, 2401, 16807, 117649, 1, 8, 64, 512, 4096, 32768, 262144, 2097152, 1, 9, 81, 729, 6561, 59049, 531441, 4782969, 43046721, 1, 10, 100, 1000, 10000, 100000, 1000000
Offset: 1

Views

Author

Amarnath Murthy, Oct 09 2002

Keywords

Comments

Table T(n,k) = (n+k-1)^(n-1) n,k > 0 read by antidiagonals. - Boris Putievskiy, Dec 17 2012

Examples

			Triangle begins:
  1;
  1,2;
  1,3,9;
  1,4,16,64;
  1,5,25,125,625;
  1,6,36,216,1296,7776;
  ...
		

Crossrefs

Programs

  • Mathematica
    Table[n^Range[0,n-1],{n,10}]//Flatten (* Harvey P. Dale, Jan 27 2020 *)
  • Python
    from math import isqrt, comb
    def A076112(n): return (isqrt(n<<3)+1>>1)**(n-comb((m:=isqrt(k:=n<<1))+(k>m*(m+1)),2)-1) # Chai Wah Wu, Jun 09 2025

Formula

As a linear array, the sequence is a(n) = A002024(n)^A002260(n) or a(n) = (t+1)^(n-t*(t+1)/2-1), where t=floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Dec 17 2012

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 20 2003

A355561 Number of n-tuples (p_1, p_2, ..., p_n) of positive integers such that p_{i-1} <= p_i <= n^(i-1).

Original entry on oeis.org

1, 1, 2, 24, 3236, 7173370, 330736663032, 382149784071841422, 12983632019302863224103688, 14912674110246473369128526689667934, 654972005961623890774153743504185499487372010, 1228018869478731662593970252736815943512232438560622483276
Offset: 0

Views

Author

Alois P. Heinz, Jul 06 2022

Keywords

Examples

			a(0) = 1: ( ).
a(1) = 1: (1).
a(2) = 2: (1,1), (1,2).
a(3) = 24: (1,1,1), (1,1,2), (1,1,3), (1,1,4), (1,1,5), (1,1,6), (1,1,7), (1,1,8), (1,1,9), (1,2,2), (1,2,3), (1,2,4), (1,2,5), (1,2,6), (1,2,7), (1,2,8), (1,2,9), (1,3,3), (1,3,4), (1,3,5), (1,3,6), (1,3,7), (1,3,8), (1,3,9).
		

Crossrefs

Main diagonal of A355576.

Programs

  • Maple
    b:= proc(n, k, i) option remember; `if`(n=0, 1,
          add(b(n-1, k, j), j=1..min(i, k^(n-1))))
        end:
    a:= n-> b(n$2, infinity):
    seq(a(n), n=0..6);
    # second Maple program:
    b:= proc(n, k) option remember; `if`(n=0, 1, -add(
          b(j, k)*(-1)^(n-j)*binomial(k^j, n-j), j=0..n-1))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..12);

A090599 Number of n-element labeled commutative groupoids with an identity.

Original entry on oeis.org

1, 4, 81, 16384, 48828125, 2821109907456, 3909821048582988049, 154742504910672534362390528, 202755595904452569706561330872953769, 10000000000000000000000000000000000000000000000
Offset: 1

Views

Author

Christian G. Bower, Dec 05 2003

Keywords

Comments

Also labeled commutative groupoids with an absorbant (zero) element.

Crossrefs

a(n) = A076113(n)*n. Cf. A038017.

Formula

a(n) = n^(1+binomial(n, 2))

A120929 Partial sums of n^(n^2), A002489.

Original entry on oeis.org

1, 2, 18, 19701, 4294986997, 298023228171940122, 10314424798788558774343889178, 256923577521069192513410265783009965210785, 6277101735386681020759366944276858929512621227473999723681
Offset: 0

Views

Author

Jonathan Vos Post, Aug 18 2006

Keywords

Comments

After 2, can this ever be prime? This is to A001923 Sum k^k, k=1..n, as k^k^k is to k^k.

Examples

			a(0) = 1 because A002489(0) is given formally as 0^0^0 = 1.
a(1) = 2 because 1 + (1^1)^1 = 1 + 1 = 2.
a(2) = 18 because 2 + (2^2)^2 = 2 + 16 = 18.
a(3) = 19701 because 18 + (3^3)^3 = 18 + 19683 = 19701.
a(4) = 4294986997 = 19701 + (4^4)^4 = 19701 + 4294967296.
		

Crossrefs

Programs

  • Mathematica
    Accumulate[Join[{1},Table[n^(n^2),{n,9}]]] (* Harvey P. Dale, Apr 10 2014 *)

Formula

a(n) = Sum_{i=0..n} i^(i^2). a(n) = Sum_{i=0..n} (i^i)^i. In this sequence, we formally define 0^0 = 1.

Extensions

More terms from Harvey P. Dale, Apr 10 2014

A385820 Number of equivalence classes of finitely-supported integer functions on Z^2 modulo moves that add + or -1 to every cell whose coordinates form an arithmetic progression of length n.

Original entry on oeis.org

1, 2, 27, 1024, 9765625, 272097792, 558545864083284007, 295147905179352825856, 1144561273430837494885949696427, 305175781250000000000000000000000000, 1890591424712781041871514584574319778449301246603238034051, 98746073676238604311280222171685832518740805156864
Offset: 1

Views

Author

Ethan Ji, Jul 09 2025

Keywords

Crossrefs

Cf. A076113.

Programs

  • Mathematica
    a[n_Integer?Positive] := Module[{pairs = FactorInteger[n]}, Times @@ (#1^(n^2*(#2 #1^(2 #2) - (#1^#2 (#1^#2 - 1))/(#1 - 1))/(2 #1^(2 #2))) & @@@ pairs)]
  • PARI
    a(n) = my(f=factor(n)); for (i=1, #f~, my(p=f[i,1], k=f[i,2]); f[i,2] = n^2*(k*p^(2*k) - p^k*(p^k-1)/(p-1))/(2*p^(2*k))); factorback(f); \\ Michel Marcus, Jul 10 2025

Formula

a(n) = Product_{p^k | n : prime p, k = p-adic order of n} p^(n^2*(k*p^(2k) - p^k(p^k - 1)/(p - 1)) / (2*p^(2k))).
a(p) = A076113(p), for prime p.
Showing 1-10 of 10 results.