cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A008977 a(n) = (4*n)!/(n!)^4.

Original entry on oeis.org

1, 24, 2520, 369600, 63063000, 11732745024, 2308743493056, 472518347558400, 99561092450391000, 21452752266265320000, 4705360871073570227520, 1047071828879079131681280, 235809301462142612780721600, 53644737765488792839237440000, 12309355935372581458927646400000
Offset: 0

Views

Author

Keywords

Comments

Number of paths of length 4*n in an n X n X n X n grid from (0,0,0,0) to (n,n,n,n).
a(n) occurs in Ramanujan's formula 1/Pi = (sqrt(8)/9801) * Sum_{n>=0} (4*n)!/(n!)^4 * (1103 + 26390*n)/396^(4*n). - Susanne Wienand, Jan 05 2013
a(n) is the number of ballot results that lead to a 4-way tie when 4*n voters each cast three votes for three out of four candidates vying for 3 slots on a county commission; each of these ballot results give 3*n votes to each of the four candidates. - Dennis P. Walsh, May 02 2013
a(n) is the constant term of (X + Y + Z + 1/(X*Y*Z))^(4*n). - Mark van Hoeij, May 07 2013
In Narumiya and Shiga on page 158 the g.f. is given as a hypergeometric function. - Michael Somos, Aug 12 2014
Diagonal of the rational function R(x,y,z,w) = 1/(1-(w+x+y+z)). - Gheorghe Coserea, Jul 15 2016

Examples

			a(13)=52!/(13!)^4=53644737765488792839237440000 is the number of ways of dealing the four hands in Bridge or Whist. - _Henry Bottomley_, Oct 06 2000
a(1)=24 since, in a 4-voter 3-vote election that ends in a four-way tie for candidates A, B, C, and D, there are 4! ways to arrange the needed vote sets {A,B,C}, {A,B,D}, {A,C,D}, and {B,C,D} among the 4 voters. - _Dennis P. Walsh_, May 02 2013
G.f. = 1 + 24*x + 2520*x^2 + 369600*x^3 + 63063000*x^4 + 11732745024*x^5 + ...
		

Crossrefs

Row 4 of A187783.
Related to diagonal of rational functions: A268545-A268555.

Programs

  • Magma
    [Factorial(4*n)/Factorial(n)^4: n in [0..20]]; // Vincenzo Librandi, Aug 13 2014
    
  • Maple
    A008977 := n->(4*n)!/(n!)^4;
  • Mathematica
    Table[(4n)!/(n!)^4,{n,0,16}] (* Harvey P. Dale, Oct 24 2011 *)
    a[ n_] := If[ n < 0, 0, (4 n)! / n!^4]; (* Michael Somos, Aug 12 2014 *)
    a[ n_] := SeriesCoefficient[ HypergeometricPFQ[ {1/4, 2/4, 3/4}, {1, 1}, 256 x], {x, 0, n}]; (* Michael Somos, Aug 12 2014 *)
  • Maxima
    A008977(n):=(4*n)!/(n!)^4$ makelist(A008977(n),n,0,20); /* Martin Ettl, Nov 15 2012 */
    
  • PARI
    a(n) = (4*n)!/n!^4; \\ Gheorghe Coserea, Jul 15 2016
    
  • Python
    from math import factorial
    def A008977(n): return factorial(n<<2)//factorial(n)**4 # Chai Wah Wu, Mar 15 2023

Formula

a(n) = A139541(n)*(A001316(n)/A049606(n))^3. - Reinhard Zumkeller, Apr 28 2008
Self-convolution of A178529, where A178529(n) = (4^n/n!^2) * Product_{k=0..n-1} (8*k + 1)*(8*k + 3).
G.f.: hypergeom([1/8, 3/8], [1], 256*x)^2. - Mark van Hoeij, Nov 16 2011
a(n) ~ 2^(8*n - 1/2) / (Pi*n)^(3/2). - Vaclav Kotesovec, Mar 07 2014
G.f.: hypergeom([1/4, 2/4, 3/4], [1, 1], 256*x). - Michael Somos, Aug 12 2014
From Peter Bala, Jul 12 2016: (Start)
a(n) = binomial(2*n,n)*binomial(3*n,n)*binomial(4*n,n) = ( [x^n](1 + x)^(2*n) ) * ( [x^n](1 + x)^(3*n) ) * ( [x^n](1 + x)^(4*n) ) = [x^n](F(x)^(24*n)), where F(x) = 1 + x + 29*x^2 + 2246*x^3 + 239500*x^4 + 30318701*x^5 + 4271201506*x^6 + ... appears to have integer coefficients. For similar results see A000897, A002894, A002897, A006480, A008978, A008979, A186420 and A188662. (End)
0 = (x^2-256*x^3)*y''' + (3*x-1152*x^2)*y'' + (1-816*x)*y' - 24*y, where y is the g.f. - Gheorghe Coserea, Jul 15 2016
From Peter Bala, Jul 17 2016: (Start)
a(n) = Sum_{k = 0..3*n} (-1)^(n+k)*binomial(4*n,n + k)* binomial(n + k,k)^4.
a(n) = Sum_{k = 0..4*n} (-1)^k*binomial(4*n,k)*binomial(n + k,k)^4. (End)
E.g.f.: 3F3(1/4,1/2,3/4; 1,1,1; 256*x). - Ilya Gutkovskiy, Jan 23 2018
From Peter Bala, Feb 16 2020: (Start)
a(m*p^k) == a(m*p^(k-1)) ( mod p^(3*k) ) for prime p >= 5 and positive integers m and k - apply Mestrovic, equation 39, p. 12.
a(n) = [(x*y*z)^n] (1 + x + y + z)^(4*n). (End)
D-finite with recurrence n^3*a(n) -8*(4*n-3)*(2*n-1)*(4*n-1)*a(n-1)=0. - R. J. Mathar, Aug 01 2022
a(n) = 24*A082368(n). - R. J. Mathar, Jun 21 2023

A060540 Square array read by antidiagonals downwards: T(n,k) = (n*k)!/(k!^n*n!), (n>=1, k>=1), the number of ways of dividing nk labeled items into n unlabeled boxes with k items in each box.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 10, 15, 1, 1, 35, 280, 105, 1, 1, 126, 5775, 15400, 945, 1, 1, 462, 126126, 2627625, 1401400, 10395, 1, 1, 1716, 2858856, 488864376, 2546168625, 190590400, 135135, 1, 1, 6435, 66512160, 96197645544, 5194672859376, 4509264634875, 36212176000, 2027025, 1
Offset: 1

Views

Author

Henry Bottomley, Apr 02 2001

Keywords

Comments

The Copeland link gives the associations of this entry with the operator calculus of Appell Sheffer polynomials, the combinatorics of simple set partitions encoded in the Faa di Bruno formula for composition of analytic functions (formal Taylor series), the Pascal matrix, and the geometry of the n-dimensional simplices (hypertriangles, or hypertetrahedra). These, in turn, are related to simple instances of the application of the exponential formula / principle / schema giving the number of not-necessarily-connected objects composed from an ensemble of connected objects. - Tom Copeland, Jun 09 2021

Examples

			Array begins:
  1,   1,       1,          1,             1,                 1, ...
  1,   3,      10,         35,           126,               462, ...
  1,  15,     280,       5775,        126126,           2858856, ...
  1, 105,   15400,    2627625,     488864376,       96197645544, ...
  1, 945, 1401400, 2546168625, 5194672859376, 11423951396577720, ...
  ...
		

Crossrefs

Main diagonal is A057599.
Related to A057599, see also A096126 and A246048.
Cf. A060358, A361948 (includes row/col 0).
Cf. A000217, A000292, A000332, A000389, A000579, A000580, A007318, A036040, A099174, A133314, A132440, A135278 (associations in Copeland link).

Programs

  • Mathematica
    T[n_, k_] := (n*k)!/(k!^n*n!);
    Table[T[n-k+1, k], {n, 1, 10}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jun 29 2018 *)
  • PARI
    { i=0; for (m=1, 20, for (n=1, m, k=m - n + 1; write("b060540.txt", i++, " ", (n*k)!/(k!^n*n!))); ) } \\ Harry J. Smith, Jul 06 2009

Formula

T(n,k) = (n*k)!/(k!^n*n!) = T(n-1,k)*A060543(n,k) = A060538(n,k)/k!.
T(n,k) = Product_{j=2..n} binomial(j*k-1,k-1). - M. F. Hasler, Aug 22 2014

Extensions

Definition reworded by M. F. Hasler, Aug 23 2014

A322252 a(0) = 1 and a(n) = (5*n)!/(5!*n!^5) for n > 0.

Original entry on oeis.org

1, 1, 945, 1401400, 2546168625, 5194672859376, 11423951396577720, 26478825654361766400, 63805953776276649848625, 158421985022100255941485000, 402789797982510165934296910320, 1044048983553856888083223814102400, 2749848597736878877579660426025283000
Offset: 0

Views

Author

Seiichi Manyama, Nov 30 2018

Keywords

Crossrefs

Programs

  • Magma
    [1] cat [Factorial(5*n)/(120*Factorial(n)^5):n in [1..12]]; // Marius A. Burtea, Feb 18 2020
  • Mathematica
    a[n_]:=(5*n)!/(5!*n!^5); Array[a, 20] (* or *) CoefficientList[Series[HypergeometricPFQ[{1/5, 2/5, 3/5, 4/5}, {1, 1, 1}, 3125 x]/(120 x) , {x, 0, 20}], x] (* Stefano Spezia, Dec 01 2018 *)

Formula

O.g.f.: F({1/5, 2/5, 3/5, 4/5}, {1, 1, 1}, 3125*x)/(120*x), where F is the generalized hypergeometric function. - Stefano Spezia, Dec 01 2018
a(n) = (1/5!)*A008978(n) for n >= 1. - Peter Bala, Feb 18 2020

A370294 G.f.: exp(Sum_{k>=1} (4*k)!/(4!*k!^4) * x^k/k).

Original entry on oeis.org

1, 1, 53, 5186, 663444, 98703235, 16179000550, 2837251240021, 522937525075783, 100134345595461824, 19762585810520535829, 3997199042964419204924, 825055790810846248226675, 173231819660726985218760834, 36906136513918240767383588700, 7962139696794640558535530147729
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 14 2024

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[Exp[Sum[(4*k)!/(4!*k!^4)*x^k/k, {k, 1, 20}]], {x, 0, 20}], x]
    CoefficientList[Series[Exp[x*HypergeometricPFQ[{1, 1, 5/4, 3/2, 7/4}, {2, 2, 2, 2}, 256*x]], {x, 0, 20}], x]

Formula

G.f. A(x) = G(x)^(1/24), where G(x) is the g.f. for A333042.
a(n) ~ c * 4^(4*n)/n^(5/2), where c = exp(HypergeometricPFQ[{1, 1, 5/4, 3/2, 7/4}, {2, 2, 2, 2}, 1] / 256) / (24*sqrt(2)*Pi^(3/2)) = 0.005320414767134132512371690902604699480645296829596277834542636529157577...

A361948 Array read by ascending antidiagonals. A(n, k) = Product_{j=0..k-1} binomial((j + 1)*n - 1, n - 1) if n >= 1, and A(0, k) = 1 for all k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 10, 15, 1, 1, 1, 1, 35, 280, 105, 1, 1, 1, 1, 126, 5775, 15400, 945, 1, 1, 1, 1, 462, 126126, 2627625, 1401400, 10395, 1, 1, 1, 1, 1716, 2858856, 488864376, 2546168625, 190590400, 135135, 1, 1
Offset: 0

Views

Author

Peter Luschny, Apr 13 2023

Keywords

Comments

Row n gives the leading coefficients of the set partition polynomials of type n. The sequence of these polynomial sequences starts: A097805, A048993, A156289, A291451, A291452, ...

Examples

			Array A(n, k) starts:
  [0] 1, 1,   1,       1,           1,                 1, ...
  [1] 1, 1,   1,       1,           1,                 1, ...
  [2] 1, 1,   3,      15,         105,               945, ...  A001147
  [3] 1, 1,  10,     280,       15400,           1401400, ...  A025035
  [4] 1, 1,  35,    5775,     2627625,        2546168625, ...  A025036
  [5] 1, 1, 126,  126126,   488864376,     5194672859376, ...  A025037
  [6] 1, 1, 462, 2858856, 96197645544, 11423951396577720, ...  A025038
.
Triangle A(n-k, k) starts:
  [0] 1;
  [1] 1, 1;
  [2] 1, 1,  1;
  [3] 1, 1,  1,   1;
  [4] 1, 1,  3,   1,   1;
  [5] 1, 1, 10,  15,   1, 1;
  [6] 1, 1, 35, 280, 105, 1, 1;
		

Crossrefs

Cf. A060540 (subarray), A370407 (antidiagonal sums, row sums).
Cf. A001147 (row 2), A025035 (row 3), A025036 (row 4), A025037 (row 5), A025038 (row 6), A025039 (row 7), A025040 (row 8), A025041 (row 9).
Cf. A088218 (column 2), A060542 (column 3), A082368 (column 4), A322252 (column 5), A057599 (main diagonal).

Programs

  • Maple
    A := (n, k) -> mul(binomial((j + 1)*n - 1, n - 1), j = 0..k-1):
    seq(seq(A(n-k, k), k = 0..n), n = 0..9);
    # Alternative, using recursion:
    A := proc(n, k) local P; P := proc(n, k) option remember;
    if n = 0 then return x^k*k! fi; if k = 0 then 1 else add(binomial(n*k, n*j)*
    P(n,k-j)*x, j=1..k) fi end: coeff(P(n, k), x, k) / k! end:
    seq(print(seq(A(n, k), k = 0..5)), n = 0..6);
    # Alternative, using exponential generating function:
    egf := n -> ifelse(n=0, 1, exp(x^n/n!)): ser := n -> series(egf(n), x, 8*n):
    row := n -> local k; seq((n*k)!*coeff(ser(n), x, n*k), k = 0..6):
    for n from 0 to 6 do [n], row(n) od;  # Peter Luschny, Aug 15 2024
  • Mathematica
    A[n_, k_] := Product[Binomial[n (j + 1) - 1, n - 1], {j, 0, k - 1}]; Table[A[n - k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Apr 13 2023 *)
  • SageMath
    def Arow(n, size):
        if n == 0: return [1] * size
        return [prod(binomial((j + 1)*n - 1, n - 1) for j in range(k)) for k in range(size)]
    for n in range(7): print(Arow(n, 7))
    # Alternative, using exponential generating function:
    def SetPolyLeadCoeff(m, n):
        x, z = var("x, z")
        if m == 0: return 1
        w = exp(2 * pi * I / m)
        o = sum(exp(z * w ** k) for k in range(m)) / m
        t = exp(x * (o - 1)).taylor(z, 0, m*n)
        p = factorial(m*n) * t.coefficient(z, m*n)
        return p.leading_coefficient(x)
    for m in range(7):
        print([SetPolyLeadCoeff(m, k) for k in range(6)])

Formula

A(n, k) = (1/k!) * [x^k] P(n, k), where P(n, k) = k!*x^k if n = 0 and otherwise 1 if k = 0 and otherwise Sum_{j=1..k} binomial(n*k, n*j)*P(n, k-j)*x.
A(n, k) = (n*k)!*[x^(n*k)] exp(x^n/n!) for n >= 1. - Peter Luschny, Aug 15 2024

A368650 a(n) = (6*n + 1)!*(9*n + 1)!/((2*n)!*(3*n)!*((5*n + 1)!)^2).

Original entry on oeis.org

1, 2940, 27511848, 324265486545, 4234842288963000, 58626067532977225512, 842744763083824037236800, 12437726604034570811549435040, 187171833825593326056635733697560, 2859197188199406875783449346275416000, 44198453917285616202092687086145825181264, 689863061309915307698539343386922516078167200
Offset: 0

Views

Author

Karol A. Penson, Jan 02 2024

Keywords

Comments

a(n) can be rigorously proven to be an integer for n>=0.

Crossrefs

Programs

  • Maple
    seq((6*n + 1)!*(9*n + 1)!/((2*n)!*(3*n)!*((5*n + 1)!)^2), n=0..12);

Formula

G.f.: hypergeometric10F9([2/9, 1/3, 4/9, 5/9, 2/3, 7/9, 5/6, 8/9, 10/9, 7/6], [2/5, 2/5, 3/5, 3/5, 4/5, 4/5, 1, 6/5, 6/5], (167365651248*z)/9765625).
O.g.f.: hypergeometric10F10([2/9, 1/3, 4/9, 5/9, 2/3, 7/9, 5/6, 8/9, 10/9, 7/6], [2/5, 2/5, 3/5, 3/5, 4/5, 4/5, 1, 1, 6/5, 6/5], (167365651248*z)/9765625).
a(n) = Integral_{x=0..167365651248/9765625} x^n*W(x) dx, n>=0, where W(x) = (78125*MeijerG([[], [-3/5, -3/5, -2/5, -2/5, -1/5, -1/5, 0, 0, 1/5, 1/5]], [[1/6, 1/9, -1/9, -1/6, -2/9, -1/3, -4/9, -5/9, -2/3, -7/9], []], (9765625*x)/167365651248))/(2066242608*Pi). MeijerG is the Meijer G - function. W(x) can be represented as a sum of 10 hypergeometric functions of type 10F9. W(x) can be proven to be a positive function in the interval [0, 167365651248/9765625]. W(x) is singular at x=0 and monotonically decreases to zero at x = 167365651248/9765625. This integral representation as the n-th power moment of the positive function W(x) in the interval [0, 167365651248/9765625] is unique, as W(x) is the solution of the Hausdorff moment problem.

A377218 Expansion of the o.g.f. A(x) defined by [x^n] A(x)^(24*n) = (4*n)!/n!^4 for n >= 0.

Original entry on oeis.org

1, 1, 29, 2246, 239500, 30318701, 4271201506, 647359627557, 103476937050223, 17223017775652625, 2959285397777331751, 521687007046376376544, 93932798602803741121051, 17215649571517858590782737, 3203146941738318544432065500, 603763082812549420389330837978, 115095760617137117019641563685386
Offset: 0

Views

Author

Peter Bala, Oct 20 2024

Keywords

Comments

Compare with A000984(n) = [x^n] (1 + x)^(2*n) = (2*n)!/n!^2.
The central binomial coefficients A000984(n) satisfy the supercongruences u(n*p^k) == u(n*p^(k-1)) (mod p^(3*k)) for all primes p >= 5 and positive integers n and k.
More generally, for positive integers r and s, the sequence {u(r,s; n) : n >= 0} defined by u(r,s; n) = [x^(s*n)] (1 + x)^(r*n) = binomial(r*n, s*n) satisfies the same supercongruences (Meštrović, Section 6, equation 39).
Conjecture: for positive integers r and s, the sequence {v(r,s; n) : n >= 0} defined by v(r,s; n) = [x^(s*n)] A(x)^(r*n) also satisfies the same supercongruences.

Crossrefs

Programs

  • Maple
    Order := 25:
    E(x) := exp(add((4*n)!/n!^4 * x^n/n, n = 1..25)):
    solve(series(x*E(x),x) = y, x):
    convert(%, polynom):
    g := taylor(y/%, y = 0, 25):
    seq(coeftayl(g^(1/24), y = 0,  n), n = 0..20);

Formula

O.g.f.: A(x) = ( x/(x * series_reversion(E(x)))^(1/24), where E(x) = exp(Sum_{n >= 1} (4*n)!/n!^4 *x^n/n) is the o.g.f. of A333042.

A181386 Tetrahedron of terms C(r,n,m) representing the number of ways of choosing m disjoint subsets of r members from an original set of n members.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 4, 6, 4, 1, 1, 3, 1, 1, 1, 1, 5, 10, 10, 5, 1, 1, 6, 3, 1, 1, 1, 1, 1, 1, 6, 15, 20, 15, 6, 1, 1, 10, 15, 1, 4, 1, 1, 1, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 15, 45, 15, 1, 10, 1, 1, 1, 1, 1, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 1, 21, 105, 105, 1, 20
Offset: 1

Views

Author

Frank M Jackson, Oct 16 2010

Keywords

Comments

The start index for r is 1 but the start index for m and n is 0. For each value of r, the triangle T_r(n,m) has row n containing 1 + floor(n/r) terms.
From Frank M Jackson, Nov 20 2010: (Start)
C(r,mr,m) = C(r,mr-1,m-1).
C(1,m,m) = A000012, C(2,2m,m) = A001147,
C(3,3m,m), ..., C(10,10m,m) = A025035, ..., A025042.
C(2,26,10) = 150738274937250 and represents the number of possible plugboard settings for a WWII German Enigma Enciphering Machine.
C(r,2r,2) = A001700, C(r,3r,3) = A060542, C(r,4r,4) = A082368.
C(r,n,m) = C(r,mr-1,m-1)*binomial(n,rm),
and applied recursively gives the identity
C(r,n,m) = Binomial(n,r*m) * Product_{p=1..m} Binomial(r*(m-p+1)-1,r-1).
(End)
C(2,26,10) = A266365(10), where 26 is the size of the alphabet. - Jonathan Sondow, Dec 29 2015

Examples

			r=1, C(1,n,m) is
  1
  1, 1
  1, 2,  1
  1, 3,  3,  1
  1, 4,  6,  4, 1
  1, 5, 10, 10, 5, 1
r=2, C(2,n,m) is
  1
  1
  1,  1
  1,  3
  1,  6,  3
  1, 10, 15
r=3, C(3,n,m) is
  1
  1
  1
  1,  1
  1,  4
  1, 10
		

Crossrefs

C(1,n,m) = T_1(n,m) = A007318, C(2,n,m) = T_2(n,m) = A100861, and C(2,26,m) = A266365.

Programs

  • Mathematica
    Flatten[Table[{n!/((n-r*m)!*m!*r!^m)}, {r, 1, 50}, {n, 0, 50}, {m, 0, Floor[n/r]}]]

Formula

C(r,n,m) = n!/((n-r*m)!*m!*(r!)^m).

A368692 a(n) = (12*n + 6)!*(6*n + 9)!/(108*(4*n + 2)!*(2*n + 3)!*((6*n + 5)!)^2).

Original entry on oeis.org

14, 563108, 54231252075, 6700034035890000, 928978310614152999200, 137569863175651804211692560, 21253098849879053645154605945160, 3381375421559384124434964404229384000, 549714622911935710495977183989400234273000
Offset: 0

Views

Author

Karol A. Penson, Jan 03 2024

Keywords

Comments

According to A. Adolphson and S. Sperber, "On the integrality of hypergeometric series whose coefficients are factorial ratios", ArXiv: 2001.03296, s.page 14, first equation after Eq.(7.4): for any two integers K, L, the ratios (3*K)!*(3*L)!/(K!*L!*((K+L)!)^2) are proven to be integers. 108*a(n) results from K = 4*n+2 and L = 2*n+3, n>=0. It is conjectured here that a(n) are integers.

Crossrefs

Programs

  • Maple
    seq((12*n + 6)!*(6*n + 9)!/(108*(4*n + 2)!*(2*n + 3)!*((6*n + 5)!)^2),n=0..9);

Formula

G.f.: 14*hypergeometric8F7([7/12, 2/3, 5/6, 11/12, 13/12, 17/12, 13/6, 7/3], [1, 7/6, 4/3, 3/2, 3/2, 5/3, 11/6], 186624*z).
E.g.f.: 14*hypergeometric8F8([7/12, 2/3, 5/6, 11/12, 13/12, 17/12, 13/6, 7/3], [1, 1, 7/6, 4/3, 3/2, 3/2, 5/3, 11/6], 186624*z).
a(n) = Integral_{x=0..186624} x^n*W(x) dx, n>=0, where W(x) = (1/(20736*Pi))*MeijerG([[], [0, 0, 1/6, 1/3, 1/2, 1/2, 2/3, 5/6]], [[-5/12, -1/3, -1/6, -1/12, 1/12, 5/12, 7/6, 4/3], []], x/186624). MeijerG is the Meijer G - function. W(x) can be represented as an expression containing the sum of 4 generalized hypergeometric functions of type 8F7. W(x) is a positive function in the interval [0, 186624], is singular at x=0 and monotonically decreases to zero at x = 186624. This integral representation as the n-th power moment of the positive function W(x) in the interval [0, 186624] is unique, as W(x) is the solution of the Hausdorff moment problem.
Let b(n) = Gamma(7+ 12*n)/(6*Gamma(2 + 2*n)*Gamma(3 + 4*n)*Gamma(6 + 6*n)), then a(n) = b(n) * A272399(n+2). - Peter Luschny, Jan 06 2024

A368875 a(n) = 24*(3*n + 1)!/(n!*((n + 2)!)^2).

Original entry on oeis.org

6, 16, 105, 1008, 12012, 164736, 2494206, 40646320, 701149020, 12655450080, 237026033790, 4577828250240, 90739095674400, 1838979005667840, 37993593597567210, 798259862714284080, 17022152442879594780, 367791659430639444000, 8040845154302354844450
Offset: 0

Views

Author

Karol A. Penson, Jan 08 2024

Keywords

Comments

According to A. Adolphson and S. Sperber (see Links), see page 14, second equation after Eq.(7.4): for any two integers K, L, the ratios (3*K+1)!*(3*L+1)!/(K!*L!*((K+L+1)!)^2) are proven to be integers. Here a(n) results from K = 1 and L = n, n >= 0.

Crossrefs

Programs

  • Maple
    seq(24*(3*n + 1)!/(n!*((n + 2)!)^2),n=0..17);
  • Mathematica
    Table[24*(3*n + 1)!/(n!*((n + 2)!)^2),{n,0,16}] (* James C. McMahon, Jan 08 2024 *)
  • SageMath
    def a(n): return (24 * (n + 1) * (n + 2) * gamma(3*n + 2)) / gamma(n + 3)^3
    print([a(n) for n in range(19)])  # Peter Luschny, Jan 09 2024

Formula

G.f.: 6*hypergeometric3F2([2/3, 1, 4/3], [3, 3], 27*z).
G.f.: -(hypergeometric2F1([-4/3, -2/3], [1], 27*z) - 1)/(3*z^2) + 8/z.
E.g.f.: 6*hypergeometric3F3([2/3, 1, 4/3], [3, 3, 1], 27*z).
a(n) = Integral_{x=0..27} x^n*W(x) dx, n >= 0, where
W(x) = (243*2^(2/3)*Gamma(5/6)*Gamma(2/3)*hypergeometric2F1([-4/3, -4/3], [1/3], x/27)) / (16*Pi^(5/2)*x^(1/3)) - (3*sqrt(3)*2^(1/3)*x^(1/3)* hypergeometric2F1([-2/3, -2/3], [5/3], x/27))/(2*sqrt(Pi)*Gamma(5/6)* Gamma(2/3)).
W(x) is a positive function in the interval [0, 27], is singular at x = 0 with the singularity x^(-1/3), and monotonically decreases to zero at x = 27, with W'(x) tending to zero at x = 27. This integral representation as the n-th power moment of the positive function W(x) in the interval [0, 27] is unique, as W(x) is the solution of the Hausdorff moment problem.
Showing 1-10 of 10 results.