cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A014983 a(n) = (1 - (-3)^n)/4.

Original entry on oeis.org

0, 1, -2, 7, -20, 61, -182, 547, -1640, 4921, -14762, 44287, -132860, 398581, -1195742, 3587227, -10761680, 32285041, -96855122, 290565367, -871696100, 2615088301, -7845264902, 23535794707, -70607384120, 211822152361, -635466457082, 1906399371247
Offset: 0

Views

Author

Keywords

Comments

q-integers for q=-3.
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=-3, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n)=(-1)^n*charpoly(A,0). - Milan Janjic, Jan 27 2010
Pisano period lengths: 1, 2, 1, 4, 4, 2, 3, 8, 1, 4, 10, 4, 6, 6, 4, 16, 16, 2, 9, 4, ... - R. J. Mathar, Aug 10 2012

Crossrefs

Programs

  • Magma
    [(1-(-3)^n)/4: n in [0..30]]; // G. C. Greubel, May 26 2018
  • Maple
    a:=n->sum ((-3)^j, j=0..n): seq(a(n), n=-1..25); # Zerinvary Lajos, Dec 16 2008
  • Mathematica
    nn = 25; CoefficientList[Series[x/((1 - x)*(1 + 3*x)), {x, 0, nn}], x] (* T. D. Noe, Jun 21 2012 *)
    Table[(1 - (-3)^n)/4, {n, 0, 27}] (* Michael De Vlieger, Nov 23 2016 *)
  • PARI
    a(n)=(1-(-3)^n)/4
    
  • Sage
    [gaussian_binomial(n,1,-3) for n in range(0,27)] # Zerinvary Lajos, May 28 2009
    

Formula

a(n) = a(n-1) + (-3)^(n-1).
G.f.: x/((1-x)*(1+3*x)).
a(n) = -(-1)^n*A015518(n).
a(n) = the (1, 2)-th element of M^n, where M = ((1, 1, 1, -2), (1, 1, -2, 1), (1, -2, 1, 1), (-2, 1, 1, 1)). - Simone Severini, Nov 25 2004
a(0)=0, a(1)=1, a(n) = -2*a(n-1) + 3*a(n-2) for n>1. - Philippe Deléham, Sep 19 2009
From Sergei N. Gladkovskii, Apr 29 2012: (Start)
G.f. A(x) = G(0)/4; G(k) = 1 - 1/(3^(2*k) - 3*x*3^(4*k)/(3*x*3^(2*k) + 1/(1 + 1/(3*3^(2*k) - 3^(3)*x*3^(4*k)/(3^2*x*3^(2*k) - 1/G(k+1)))))); (continued fraction, 3rd kind, 6-step).
E.g.f. E(x) = G(0)/4; G(k) = 1 - 1/(9^k - 3*x*81^k/(3*x*9^k + (2*k+1)/(1 + 1/(3*9^k - 27*x*81^k/(9*x*9^k - (2*k+2)/G(k+1)))))); (continued fraction, 3rd kind, 6-step). (End)
a(n) = A084222(n) - 1. - Filip Zaludek, Nov 19 2016
E.g.f.: sinh(x)*cosh(x)*exp(-x). - Ilya Gutkovskiy, Nov 20 2016

A084221 a(n+2) = 4*a(n), with a(0)=1, a(1)=3.

Original entry on oeis.org

1, 3, 4, 12, 16, 48, 64, 192, 256, 768, 1024, 3072, 4096, 12288, 16384, 49152, 65536, 196608, 262144, 786432, 1048576, 3145728, 4194304, 12582912, 16777216, 50331648, 67108864, 201326592, 268435456, 805306368, 1073741824, 3221225472, 4294967296, 12884901888
Offset: 0

Views

Author

Paul Barry, May 21 2003

Keywords

Comments

Binomial transform is A060925. Binomial transform of A084222.
Sequences with similar recurrence rules: A016116 (multiplier 2), A038754 (multiplier 3), A133632 (multiplier 5). See A133632 for general formulas. - Hieronymus Fischer, Sep 19 2007
Equals A133080 * A000079. A122756 is a companion sequence. - Gary W. Adamson, Sep 19 2007

Examples

			Binary...............Decimal
1..........................1
11.........................3
100........................4
1100......................12
10000.....................16
110000....................48
1000000...................64
11000000.................192
100000000................256
1100000000...............768
10000000000.............1024
110000000000............3072, etc. - _Philippe Deléham_, Mar 21 2014
		

Crossrefs

For partial sums see A133628. Partial sums for other multipliers p: A027383(p=2), A087503(p=3), A133629(p=5).
Other related sequences: A132666, A132667, A132668, A132669.

Programs

Formula

a(n) = (5*2^n-(-2)^n)/4.
G.f.: (1+3*x)/((1-2*x)(1+2*x)).
E.g.f.: (5*exp(2*x) - exp(-2*x))/4.
a(n) = A133628(n) - A133628(n-1) for n>1. - Hieronymus Fischer, Sep 19 2007
Equals A133080 * [1, 2, 4, 8, ...]. Row sums of triangle A133087. - Gary W. Adamson, Sep 08 2007
a(n+1)-2a(n) = A000079 signed. a(n)+a(n+2)=5*a(n). First differences give A135520. - Paul Curtz, Apr 22 2008
a(n) = A074323(n+1)*A016116(n). - R. J. Mathar, Jul 08 2009
a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011
a(n) = Sum_{k=0..n+1} A181650(n+1,k)*2^k. - Philippe Deléham, Nov 19 2011
a(2*n) = A000302(n); a(2*n+1) = A164346(n). - Philippe Deléham, Mar 21 2014

Extensions

Edited by N. J. A. Sloane, Dec 14 2007

A211866 (9^n - 5) / 4.

Original entry on oeis.org

1, 19, 181, 1639, 14761, 132859, 1195741, 10761679, 96855121, 871696099, 7845264901, 70607384119, 635466457081, 5719198113739, 51472783023661, 463255047212959, 4169295424916641, 37523658824249779, 337712929418248021, 3039416364764232199, 27354747282878089801
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 12 2013

Keywords

Comments

(2*n, a(n)) are the solutions of Diophantine equation 3^x = 4*y + 5.
Second bisection of A080926. - Bruno Berselli, Feb 12 2013
Sum of n-th row of triangle of powers of 9: 1; 9 1 9; 81 9 1 9 81; 729 81 9 1 9 81 729; ... - Philippe Deléham, Feb 24 2014

Examples

			a(1) = 1;
a(2) = 9 + 1 + 9 = 19;
a(3) = 81 + 9 + 1 + 9 + 81 = 181;
a(4) = 729 + 81 + 9 + 1 + 9 + 81 + 729 = 1639; etc. - _Philippe Deléham_, Feb 24 2014
		

References

  • Jiri Herman, Radan Kucera and Jaromir Simsa, Equations and Inequalities, Springer (2000), p. 225 (5.3).

Crossrefs

Programs

Formula

G.f.: x*(1+9*x)/((1-x)*(1-9*x)). - Bruno Berselli, Feb 12 2013
a(n)-a(n-1) = A000792(6n-4). - Bruno Berselli, Feb 12 2013
a(n) = 9*a(n-1) + 10, a(1) = 1. - Philippe Deléham, Feb 24 2014
a(n) = -A084222(2*n). - Philippe Deléham, Feb 24 2014

A087205 a(n) = -2*a(n-1) + 4*a(n-2), a(0)=1, a(1)=2.

Original entry on oeis.org

1, 2, 0, 8, -16, 64, -192, 640, -2048, 6656, -21504, 69632, -225280, 729088, -2359296, 7634944, -24707072, 79953920, -258736128, 837287936, -2709520384, 8768192512, -28374466560, 91821703168, -297141272576, 961569357824, -3111703805952
Offset: 0

Views

Author

Paul Barry, Aug 25 2003

Keywords

Comments

Inverse binomial transform of A087204.

Crossrefs

Programs

  • Magma
    [(-1)^(n+1)*2^n*Fibonacci(n-2): n in [0..50]]; // G. C. Greubel, Oct 08 2018
  • Mathematica
    Table[-(-2)^n*Fibonacci[n - 2], {n, 0, 50}] (* G. C. Greubel, Oct 08 2018 *)
    LinearRecurrence[{-2,4},{1,2},30] (* Harvey P. Dale, Jan 24 2022 *)
  • PARI
    Vec((4*x+1)/(-4*x^2+2*x+1)+O(x^66)) \\ Joerg Arndt, Jul 14 2013
    
  • PARI
    vector(50, n, n--; (-1)^(n+1)*2^n*fibonacci(n-2)) \\ G. C. Greubel, Oct 08 2018
    

Formula

a(n) = (-1-sqrt(5))^n * (1/2-3*sqrt(5)/10) + (-1+sqrt(5))^n * (1/2+3*sqrt(5)/10).
G.f.: (4*x +1)/(-4*x^2 +2*x +1). - Joerg Arndt, Jul 14 2013
a(n+2) = A085449(n)*(-1)^(n+1); a(n+3) = A063727(n)*(-1)^n.
a(n) = -(-2)^n*F(n-2) for n >= 0, with F = A000045, and F(-1) = 1, F(-2) = -1. - Wolfdieter Lang, Oct 08 2018

A166114 a(n) = (6-(-4)^n)/5.

Original entry on oeis.org

1, 2, -2, 14, -50, 206, -818, 3278, -13106, 52430, -209714, 838862, -3355442, 13421774, -53687090, 214748366, -858993458, 3435973838, -13743895346, 54975581390, -219902325554, 879609302222, -3518437208882, 14073748835534, -56294995342130
Offset: 0

Views

Author

Philippe Deléham, Oct 06 2009

Keywords

Crossrefs

Programs

Formula

a(n) = 4*a(n-2) - 3*a(n-1), a(0)= 1, a(1)= 2, for n>1.
a(n) = 6 - 4*a(n-1), a(0)=1.
a(n) = a(n-1) + (-4)^(n-1), a(0)=1.
G.f.: (1+5x)/(1+3x-4x^2).
E.g.f.: (6*exp(x) - exp(-4x))/5.

Extensions

a(12) onward changed by Georg Fischer, May 03 2019

A166122 a(n) = (7-(-5)^n)/6.

Original entry on oeis.org

1, 2, -3, 22, -103, 522, -2603, 13022, -65103, 325522, -1627603, 8138022, -40690103, 203450522, -1017252603, 5086263022, -25431315103, 127156575522, -635782877603, 3178914388022, -15894571940103, 79472859700522
Offset: 0

Views

Author

Philippe Deléham, Oct 07 2009

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{-4,5},{1,2},30] (* Harvey P. Dale, Mar 10 2016 *)
    Table[(7 - (-5)^n)/6, {n, 24}] (* or *)
    CoefficientList[Series[(1 + 6 x)/(1 + 4 x - 5 x^2), {x, 0, 24}], x] (* Michael De Vlieger, Apr 27 2016 *)

Formula

a(n) = 5*a(n-2) - 4*a(n-1), a(0)= 1, a(1)= 2, for n>1.
a(n) = 7-5*a(n-1), a(0)=1.
a(n) = a(n-1)+(-5)^(n-1), a(0)=1.
O.g.f.: (1+6*x)/(1+4*x-5*x^2).
E.g.f.: (7*exp(x)-exp(-5*x))/6.

A166124 Triangle, read by rows, given by [0,1/2,1/2,0,0,0,0,0,0,0,...] DELTA [2,-1,0,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 2, 0, 1, 2, 0, 1, 1, 2, 0, 1, 1, 1, 2, 0, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2
Offset: 0

Views

Author

Philippe Deléham, Oct 07 2009

Keywords

Examples

			Triangle begins :
1 ;
0,2 ;
0,1,2 ;
0,1,1,2 ;
0,1,1,1,2 ;
0,1,1,1,1,2 ;
0,1,1,1,1,1,2 ; ...
		

Formula

Sum_{k, 0<=k<=n} T(n,k)*x^(n-k)= A166122(n), A166114(n), A084222(n), A084247(n), A000034(n), A040000(n), A000027(n+1), A000079(n), A007051(n), A047849(n), A047850(n), A047851(n), A047852(n), A047853(n), A047854(n), A047855(n), A047856(n) for x= -5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11 respectively.
Sum_{k, 0<=k<=n} T(n,k)*x^k= A000007(n), A000027(n+1), A033484(n), A134931(n), A083597(n) for x= 0,1,2,3,4 respectively.
T(n,k)= A166065(n,k)/2^(n-k).
G.f.: (1-x+x*y)/(1-x-x*y+x^2*y). - Philippe Deléham, Nov 09 2013
T(n,k) = T(n-1,k) + T(n-1,k-1) - T(n-2,k-1), T(0,0) = 1, T(1,0) = 0, T(1,1) = 2, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Nov 09 2013
Showing 1-7 of 7 results.