cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A002544 a(n) = binomial(2*n+1,n)*(n+1)^2.

Original entry on oeis.org

1, 12, 90, 560, 3150, 16632, 84084, 411840, 1969110, 9237800, 42678636, 194699232, 878850700, 3931426800, 17450721000, 76938289920, 337206098790, 1470171918600, 6379820115900, 27569305764000, 118685861314020, 509191949220240, 2177742427450200, 9287309860732800
Offset: 0

Views

Author

Keywords

Comments

Coefficients for numerical differentiation.
Take the first n integers 1,2,3..n and find all combinations with repetitions allowed for the first n of them. Find the sum of each of these combinations to get this sequence. Example for 1 and 2: 1,2,1+1,1+2,2+2 gives sum of 12=a(2). - J. M. Bergot, Mar 08 2016
Let cos(x) = 1 -x^2/2 +x^4/4!-x^6/6!.. = Sum_i (-1)^i x^(2i)/(2i)! be the standard power series of the cosine, and y = 2*(1-cos(x)) = 4*sin^2(x/2) = x^2 -x^4/12 +x^6/360 ...= Sum_i 2*(-1)^(i+1) x^(2i)/(2i)! be a closely related series. Then this sequence represents the reversion x^2 = Sum_i 1/a(i) *y^(i+1). - R. J. Mathar, May 03 2022

References

  • C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 514.
  • J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, p. 92.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals A002736/2.
A diagonal of A331430.

Programs

  • Maple
    seq((n+1)^2*(binomial(2*n+2, n+1))/2, n=0..29); # Zerinvary Lajos, May 31 2006
  • Mathematica
    Table[Binomial[2n+1,n](n+1)^2,{n,0,20}] (* Harvey P. Dale, Mar 23 2011 *)
  • PARI
    a(n)=binomial(2*n+1,n)*(n+1)^2
    
  • PARI
    x='x+O('x^99); Vec((1+2*x)/(1-4*x)^(5/2)) \\ Altug Alkan, Jul 09 2016
    
  • Python
    from sympy import binomial
    def a(n): return binomial(2*n + 1, n)*(n + 1)**2 # Indranil Ghosh, Apr 18 2017

Formula

G.f.: (1 + 2x)/(1 - 4x)^(5/2).
a(n-1) = sum(i_1 + i_2 + ... + i_n) where the sum is over 0 <= i_1 <= i_2 <= ... <= i_n <= n; a(n) = (n+1)^2 C(2n+1, n). - David Callan, Nov 20 2003
a(n) = (n+1)^2 * binomial(2*n+2,n+1)/2. - Zerinvary Lajos, May 31 2006
Asymptotics: a(n)-> (1/64) * (128*n^2+176*n+41) * 4^n * n^(-1/2)/(sqrt(Pi)), for n->infinity. - Karol A. Penson, Aug 05 2013
G.f.: 2F1(3/2,2;1;4x). - R. J. Mathar, Aug 09 2015
a(n) = A002457(n)*(n+1). - R. J. Mathar, Aug 09 2015
a(n) = A000217(n)*A000984(n). - J. M. Bergot, Mar 10 2016
a(n-1) = A001791(n)*n*(n+1)/2. - Anton Zakharov, Jul 04 2016
From Ilya Gutkovskiy, Jul 04 2016: (Start)
E.g.f.: ((1 + 2*x)*(1 + 8*x)*BesselI(0,2*x) + 2*x*(3 + 8*x)*BesselI(1,2*x))*exp(2*x).
Sum_{n>=0} 1/a(n) = Pi^2/9 = A100044. (End)
From Peter Bala, Apr 18 2017: (Start)
With x = y^2/(1 + y) we have log^2(1 + y) = Sum_{n >= 0} (-1)^n*x^(n+1)/a(n). See Shenton and Kemp.
Series reversion ( Sum_{n >= 0} (-1)^n*x^(n+1)/a(n) ) = Sum_{n >= 1} 2*x^n/(2*n)! = Sum_{n >= 1} x^n/A002674(n). (End)
D-finite with recurrence n^2*a(n) -2*(n+1)*(2*n+1)*a(n-1)=0. - R. J. Mathar, Feb 08 2021
Sum_{n>=0} (-1)^n/a(n) = 4*arcsinh(1/2)^2 = A202543^2. - Amiram Eldar, May 14 2022

A123160 Triangle read by rows: T(n,k) = n!*(n+k-1)!/((n-k)!*(n-1)!*(k!)^2) for 0 <= k <= n, with T(0,0) = 1.

Original entry on oeis.org

1, 1, 1, 1, 4, 3, 1, 9, 18, 10, 1, 16, 60, 80, 35, 1, 25, 150, 350, 350, 126, 1, 36, 315, 1120, 1890, 1512, 462, 1, 49, 588, 2940, 7350, 9702, 6468, 1716, 1, 64, 1008, 6720, 23100, 44352, 48048, 27456, 6435, 1, 81, 1620, 13860, 62370, 162162, 252252, 231660, 115830, 24310
Offset: 0

Views

Author

Roger L. Bagula, Oct 02 2006

Keywords

Comments

T(n,k) is also the number of order-preserving partial transformations (of an n-element chain) of width k (width(alpha) = |Dom(alpha)|). - Abdullahi Umar, Aug 25 2008

Examples

			Triangle begins:
  1;
  1,  1;
  1,  4,   3;
  1,  9,  18,  10;
  1, 16,  60,  80,  35;
  1, 25, 150, 350, 350, 126;
  ...
		

References

  • Frederick T. Wall, Chemical Thermodynamics, W. H. Freeman, San Francisco, 1965 pages 296 and 305

Crossrefs

Programs

  • Magma
    [Binomial(n,k)*Binomial(n+k-1,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 19 2022
    
  • Maple
    T:=proc(n,k) if k=0 and n=0 then 1 elif k<=n then n!*(n+k-1)!/(n-k)!/(n-1)!/(k!)^2 else 0 fi end: for n from 0 to 10 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
  • Mathematica
    T[n_, m_]= If [n==m==0, 1, n!*(n+m-1)!/((n-m)!*(n-1)!(m!)^2)];
    Table[T[n, m], {n,0,10}, {m,0,n}]//Flatten
    max = 9; s = (x+1)/(2*Sqrt[(1-x)^2-4*y])+1/2 + O[x]^(max+2) + O[y]^(max+2); T[n_, k_] := SeriesCoefficient[s, {x, 0, n}, {y, 0, k}]; Table[T[n-k, k], {n, 0, max}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 18 2015, after Vladimir Kruchinin *)
  • SageMath
    def A123160(n,k): return binomial(n, k)*binomial(n+k-1, k)
    flatten([[A123160(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 19 2022

Formula

T(n, m) = n!*(n + m - 1)!/((n - m)!*(n - 1)!(m!)^2), with T(0, 0) = 1.
T(n, k) = binomial(n,k)*binomial(n+k-1,k). The row polynomials (except the first) are (1+x)*P(n,0,1,2x+1), where P(n,a,b,x) denotes the Jacobi polynomial. The columns of this triangle give the diagonals of A122899. - Peter Bala, Jan 24 2008
T(n, k) = binomial(n,k)*(n+k-1)!/((n-1)!*k!).
T(n, k)= binomial(n,k)*binomial(n+k-1,n-1). - Abdullahi Umar, Aug 25 2008
G.f.: (x+1)/(2*sqrt((1-x)^2-4*y)) + 1/2. - Vladimir Kruchinin, Jun 16 2015
From _Peter Bala, Jul 20 2015: (Start)
O.g.f. (1 + x)/( 2*sqrt((1 - x)^2 - 4*x*y) ) + 1/2 = 1 + (1 + y)*x + (1 + 4*y + 3*y^2)*x^2 + ....
For n >= 1, the n-th row polynomial R(n,y) = (1 + y)*r(n-1,y), where r(n,y) is the n-th row polynomial of A178301.
exp( Sum_{n >= 1} R(n,y)*x^n/n ) = 1 + (1 + y)*x + (1 + 3*y + 2*y^2)*x^2 + ... is the o.g.f for A088617. (End)
From G. C. Greubel, Jun 19 2022: (Start)
T(n, n) = A088218(n).
T(n, n-1) = A037965(n).
T(n, n-2) = A085373(n-2).
Sum_{k=0..n} T(n, k) = A123164(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A005773(n). (End)

Extensions

Edited by N. J. A. Sloane, Oct 26 2006 and Jul 03 2008

A141611 Triangle read by rows: T(n, k) = (n-k+1)*(k+1)*binomial(n, k).

Original entry on oeis.org

1, 2, 2, 3, 8, 3, 4, 18, 18, 4, 5, 32, 54, 32, 5, 6, 50, 120, 120, 50, 6, 7, 72, 225, 320, 225, 72, 7, 8, 98, 378, 700, 700, 378, 98, 8, 9, 128, 588, 1344, 1750, 1344, 588, 128, 9, 10, 162, 864, 2352, 3780, 3780, 2352, 864, 162, 10, 11, 200, 1215, 3840, 7350, 9072, 7350, 3840, 1215, 200, 11
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Aug 22 2008

Keywords

Comments

Read as a square array, this array factorizes as M*transpose(M), where M = ( k*binomial(n, k) )A003506(n,k).%20-%20_Peter%20Bala">{n,k>=1} = A003506(n,k). - _Peter Bala, Mar 06 2017

Examples

			Triangle begins as:
   1;
   2,   2;
   3,   8,    3;
   4,  18,   18,    4;
   5,  32,   54,   32,    5;
   6,  50,  120,  120,   50,    6;
   7,  72,  225,  320,  225,   72,    7;
   8,  98,  378,  700,  700,  378,   98,    8;
   9, 128,  588, 1344, 1750, 1344,  588,  128,    9;
  10, 162,  864, 2352, 3780, 3780, 2352,  864,  162,  10;
  11, 200, 1215, 3840, 7350, 9072, 7350, 3840, 1215, 200, 11;
  ...
From _Peter Bala_, Mar 06 2017: (Start)
Factorization as a square array
  /1         \ /1  2  3  4...\ /1  2   3   4...\
  |2  2      | |   2  6 12...| |2  8  12  32...|
  |3  6  3   |*|      3 12...|=|3 18  54 120...|
  |4 12 12 4 | |         4...| |4 32 120 320...|
  |...       | |             | |...            |
(End)
		

Crossrefs

Cf. A003506, A007466 (row sums), A037966, A085373.

Programs

  • Magma
    A141611:= func< n,k | (k+1)*(n-k+1)*Binomial(n,k) >;
    [A141611(n,k): k in [0..n], n in [0..14]]; // G. C. Greubel, Sep 22 2024
    
  • Mathematica
    T[n_, m_]:= (n-m+1)*(m+1)*Binomial[n,m];
    Table[T[n, m], {n,0,12}, {m,0,n}]//Flatten
  • PARI
    T(n,m)=(n - m + 1)*(m + 1)*binomial(n, m) \\ Charles R Greathouse IV, Feb 15 2017
    
  • SageMath
    def A141611(n,k): return (k+1)*(n-k+1)*binomial(n,k)
    flatten([[A141611(n,k) for k in range(n+1)] for n in range(15)]) # G. C. Greubel, Sep 22 2024

Formula

T(n, k) = (k+1)*(n-k+1)*binomial(n,k).
Sum_{k=0..n} T(n, k) = A007466(n+1) (row sums).
O.g.f.: (1 - (1 + t)*x + 2*t*x^2)/(1 - (1 + t)*x)^3 = 1 + (2 + 2*t)*x + (3 + 8*t + 3*t^2)*x^2 + (4 + 18*t + 18*t^2 + 4*t^3)*x^3 + .... - Peter Bala, Mar 06 2017
From G. C. Greubel, Sep 22 2024: (Start)
T(2*n, n) = A037966(n+1).
T(2*n-1, n) = 2*A085373(n-1), for n >= 1.
Sum_{k=0..n} (-1)^k*T(n, k) = A000007(n) - 2*[n=2]. (End)

Extensions

Offset corrected by G. C. Greubel, Sep 22 2024

A119578 a(n) = (n + n^2)*binomial(2*n,n)/2.

Original entry on oeis.org

0, 2, 18, 120, 700, 3780, 19404, 96096, 463320, 2187900, 10161580, 46558512, 210924168, 946454600, 4212243000, 18614102400, 81746933040, 357041751660, 1551848136300, 6715600122000, 28947771052200, 124337568995640, 532337037821160, 2272426880817600, 9674281104930000
Offset: 0

Views

Author

Zerinvary Lajos, May 31 2006

Keywords

Comments

For n > 0, also the number of one-sided prudent walks from (0,0) to (n,n), with n+2 east steps, 2 west steps and n north steps.

Crossrefs

Programs

  • Magma
    [0] cat [ (n+1)*Factorial(2*n-1)/Factorial(n-1)^2: n in [1..23] ]; // Klaus Brockhaus, Apr 30 2011
  • Maple
    [seq ((n+n^2)*(binomial(2*n,n))/2,n=0..29)];
  • Mathematica
    Table[(n+n^2) Binomial[2n,n]/2,{n,0,30}] (* Harvey P. Dale, Jun 02 2016 *)

Formula

a(n) = (n+1)*Gamma(2*n)/Gamma(n)^2 for n > 0. - Shanzhen Gao, Apr 26 2011
G.f.: 2 * x * (1 - x) / (1 - 4*x)^(5/2). - Ilya Gutkovskiy, Nov 17 2021
From Amiram Eldar, May 15 2022: (Start)
Sum_{n>=1} 1/a(n) = 2*Pi^2/9 - 2*Pi/sqrt(3) + 2.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*sqrt(5)*log(phi) - 8*log(phi)^2 - 2, where phi is the golden ratio (A001622). (End)
D-finite with recurrence (-n+1)*a(n) +(5*n-1)*a(n-1) +2*(-2*n+3)*a(n-2)=0. - R. J. Mathar, Jul 08 2022
a(n) = A000217(n)*A000984(n). - R. J. Mathar, Jul 08 2022

A085374 a(n) = binomial(2n+1, n+1)*binomial(n+3, 3).

Original entry on oeis.org

1, 12, 100, 700, 4410, 25872, 144144, 772200, 4011150, 20323160, 100876776, 492156392, 2366136500, 11232648000, 52739956800, 245240799120, 1130632213590, 5172827121000, 23504600427000, 106141827191400, 476627347816620, 2129348151284640, 9468445336740000
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Jun 26 2003

Keywords

Crossrefs

Programs

  • Maple
    seq(binomial(n+2,3)/2*binomial(2*n,n), n=1..20); # Zerinvary Lajos, Jan 18 2007
  • Mathematica
    Table[Binomial[2 n + 1, n + 1]Binomial[n + 3, 3], {n, 0, 30}]

Formula

a(n) = A000292(n+1)*A000984(n+1)/2. - Zerinvary Lajos, Jan 18 2007, corrected Aug 09 2015
From R. J. Mathar, Aug 09 2015: (Start)
D-finite with recurrence n*(n+1)*a(n) - 2*(n+3)*(2*n+1)*a(n-1) = 0.
G.f.: 2F1(3/2,4;2;4x). (End)
a(n) ~ 2^(2*n)*n^(5/2)/(3*sqrt(Pi)). - Stefano Spezia, Aug 31 2025
From Amiram Eldar, Sep 06 2025: (Start)
a(n) = A001700(n) * A000292(n+1).
Sum_{n>=0} 1/a(n) = 10*sqrt(3)*Pi - 8*Pi^2/3 - 27.
Sum_{n>=0} (-1)^n/a(n) = 84*sqrt(5)*log(phi) - 192*log(phi)^2 - 45, where phi is the golden ratio (A001622). (End)

A085375 a(n) = binomial(2*n+1, n+1)*binomial(n+4, 4).

Original entry on oeis.org

1, 15, 150, 1225, 8820, 58212, 360360, 2123550, 12033450, 66050270, 353068716, 1845586470, 9464546000, 47738754000, 237329805600, 1164893795820, 5653161067950, 27157342385250, 129275302348500, 610315506350550, 2859764086899720, 13308425945529000
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Jun 26 2003

Keywords

Crossrefs

Programs

  • Maple
    seq(binomial(2*n+1, n+1)*binomial(n+4, 4), n=0..20); # Zerinvary Lajos, Jan 18 2007
  • Mathematica
    Table[Binomial[2*n + 1, n + 1] * Binomial[n + 4, 4], {n, 0, 30}]
  • Python
    from _future_ import division
    A085375_list, b = [], 1
    for n in range(501):
        A085375_list.append(b)
        b = b*2*(n+5)*(2*n+3)//((n+1)*(n+2)) # Chai Wah Wu, Jan 26 2016

Formula

a(n+1) = a(n)*2*(n+5)*(2*n+3)/((n+1)*(n+2)). - Chai Wah Wu, Jan 26 2016
G.f.: (1 - 3*x + 6*x^2 - 5*x^3) / (1 - 4*x)^(9/2). - Ilya Gutkovskiy, Nov 17 2021
Showing 1-6 of 6 results.