A187430
Number of nonnegative walks of n steps with step sizes 1 and 2, starting and ending at 0.
Original entry on oeis.org
1, 0, 2, 2, 11, 24, 93, 272, 971, 3194, 11293, 39148, 139687, 497756, 1798002, 6517194, 23807731, 87336870, 322082967, 1192381270, 4431889344, 16527495396, 61831374003, 231973133544, 872598922407, 3290312724374, 12434632908623, 47089829065940, 178672856753641
Offset: 0
The 11 length-4 walks are 0,2,4,2,0; 0,2,3,2,0; 0,2,3,1,0; 0,2,1,2,0; 0,2,0,2,0; 0,2,0,1,0; 0,1,3,2,0; 0,1,3,1,0; 0,1,2,1,0; 0,1,0,2,0; and 0,1,0,1,0.
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- C. Banderier, Analytic combinatorics of random walks and planar maps, PhD Thesis, 2001 , Example 11.
- C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, Explicit formulas for enumeration of lattice paths: basketball and the kernel method, arXiv preprint arXiv:1609.06473 [math.CO], 2016.
- Jean-Luc Baril and José L. Ramírez, Knight's paths towards Catalan numbers, Univ. Bourgogne Franche-Comté (2022).
-
a:= proc(n) option remember; `if`(n<3, (n-1)*(3*n-2)/2,
((n+1)*(115*n^3-137*n^2-10*n+8) *a(n-1)
+4*(2*n-1)*(5*n^3+36*n^2-26*n-12) *a(n-2)
-36*(n-2)*(2*n-1)*(2*n-3)*(5*n+1) *a(n-3))
/ (2*(5*n-4)*(2*n+1)*(n+2)*(n+1)))
end:
seq(a(n), n=0..30); # Alois P. Heinz, May 16 2013
-
a[n_] := (Sum[Binomial[n+1, l]*Sum[Binomial[n-2*i-1, 2*l-1]*Binomial[n-l+1, i], {i, 0, (n-1)/2}], {l, 0, n+1}] + (((-1)^n+1)*Binomial[n+1, n/2])/2)/(n+1); Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Oct 24 2016, after Vladimir Kruchinin *)
-
a(n):=((sum(binomial(n+1,l)*sum(binomial(n-2*i-1,2*l-1)*binomial(n-l+1,i),i,0,(n-1)/2),l,0,n+1))+(((-1)^n+1)*binomial(n+1,n/2))/2)/(n+1); /* Vladimir Kruchinin, Jun 26 2015 */
-
al(n)={local(r,p);
r=vector(n);r[1]=p=1;
for(k=2,n,p*=1+x+x^3+x^4;p=(p-polcoeff(p,0)-polcoeff(p,1)*x)/x^2;r[k]=polcoeff(p,0));
r}
A168595
a(n) = Sum_{k=0..2n} C(2n,k)*A027907(n,k) where A027907 is the triangle of trinomial coefficients.
Original entry on oeis.org
1, 4, 36, 358, 3748, 40404, 443886, 4941654, 55555236, 629285416, 7170731236, 82108083204, 943960439086, 10889085499348, 125974782200478, 1461030555025458, 16981658850393252, 197757344280343968
Offset: 0
-
cb := n -> binomial(2*n, n);
a := n -> add((-1)^(n-k)*binomial(n,k)*cb(n+k), k=0..n);
seq(a(n), n=0..17); # Peter Luschny, Aug 15 2017
-
{a(n)=sum(k=0,2*n,binomial(2*n,k)*polcoeff((1+x+x^2)^n,k))}
A137725
Number of sequences of length n with elements {-2,-1,+1,+2}, such that the sum of elements of the whole sequence but of no proper subsequence equals 0 modulo n. For n>=4, the number of Hamiltonian (directed) circuits on the circulant graph C_n(1,2).
Original entry on oeis.org
4, 4, 16, 18, 24, 32, 46, 58, 82, 112, 158, 220, 316, 450, 650, 938, 1364, 1982, 2892, 4220, 6170, 9022, 13206, 19332, 28314, 41472, 60760, 89022, 130446, 191150, 280120, 410506, 601600, 881656, 1292102, 1893634, 2775226, 4067256, 5960822, 8735972, 12803156, 18763898, 27499794, 40302866, 59066684
Offset: 1
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Mordecai J. Golin and Yiu Cho Leung, Unhooking Circulant Graphs: A Combinatorial Method for Counting Spanning Trees, Hamiltonian Cycles and other Parameters, Technical report HKUST-TCSC-2004-02. See also
- Eric Weisstein's World of Mathematics, Circulant Graph
- Eric Weisstein's World of Mathematics, Hamiltonian Cycle
- Index entries for linear recurrences with constant coefficients, signature (2,0,-1,0,-1,1).
-
CoefficientList[Series[-2*x^2-2*x-6-1/(x+1)+2/(x-1)^2+1/(x-1)+(4*x-6)/(x^3+x-1), {x, 0, 50}], x] (* G. C. Greubel, Apr 28 2017 *)
-
my(x='x+O('x^50)); Vec(-2*x^2-2*x-6-1/(x+1)+2/(x-1)^2+1/(x-1)+(4*x-6)/(x^3+x-1)) \\ G. C. Greubel, Apr 28 2017
A166135
Number of possible paths to each node that lies along the edge of a cut 4-nomial tree, that is rooted one unit from the cut.
Original entry on oeis.org
1, 1, 3, 7, 22, 65, 213, 693, 2352, 8034, 28014, 98505, 350548, 1256827, 4542395, 16517631, 60417708, 222087320, 820099720, 3040555978, 11314532376, 42243332130, 158196980682, 594075563613, 2236627194858, 8440468925400, 31921622746680, 120970706601255
Offset: 1
Rick Jarosh (rick(AT)jarosh.net), Oct 08 2009
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Cyril Banderier, Christian Krattenthaler, Alan Krinik, Dmitry Kruchinin, Vladimir Kruchinin, David Tuan Nguyen, and Michael Wallner, Explicit formulas for enumeration of lattice paths: basketball and the kernel method, arXiv:1609.06473 [math.CO], 2016.
- Jean-Luc Baril and José L. Ramírez, Knight's paths towards Catalan numbers, Univ. Bourgogne Franche-Comté (2022).
- Jérémie Bettinelli, Éric Fusy, Cécile Mailler, and Lucas Randazzo, A bijective study of Basketball walks, arXiv:1611.01478 [math.CO], 2016.
- Alexander Burstein and Louis W. Shapiro, Pseudo-involutions in the Riordan group, arXiv:2112.11595 [math.CO], 2021.
- Rick Jarosh, Illustration of 4-nomial graph The series is the one at the top.
- Rick Jarosh, First 4096 terms of the series in a text file.
- Rick Jarosh, Illustrates the sequence in context. The above reference gives the first 16 terms of the first 128 sequences in the family, of which this sequence is the third, the first being the Catalan numbers, the second the Motzkin integers, the fourth A104632.
A055113 is the third sequence from the top of the graph illustrated above.
-
[(&+[Binomial(n,k)*Binomial(n,2*n-3*k-1): k in [0..n]])/n : n in [1..30]]; // G. C. Greubel, Dec 12 2019
-
seq( add(binomial(n,k)*binomial(n,2*n-3*k-1), k=0..n)/n, n=1..30); # G. C. Greubel, Dec 12 2019
-
Rest[CoefficientList[Series[(Sqrt[(2-2Sqrt[1-4x]-3x)/x]-1)/2, {x, 0, 30}],x]] (* Benedict W. J. Irwin, Sep 24 2016 *)
-
vector(30, n, sum(k=0,n, binomial(n,k)*binomial(n,2*n-3*k-1))/n ) \\ G. C. Greubel, Dec 12 2019
-
[sum(binomial(n,k)*binomial(n,2*n-3*k-1) for k in (0..n))/n for n in (1..30)] # G. C. Greubel, Dec 12 2019
A117813
Consider 1-D random walk with jumps up to the third neighbor, i.e., set of possible jumps is {-3,-2,-1,+1,+2,+3}. Sequence gives number of paths of length n ending at origin.
Original entry on oeis.org
1, 0, 6, 18, 122, 600, 3450, 18914, 107338, 606816, 3466356, 19852470, 114239642, 659275760, 3815952426, 22138925718, 128718762250, 749773729952, 4374616990332, 25561798008252, 149562047056572, 876140945014640, 5138089929141890, 30162194533001982
Offset: 0
-
a:=array(0..25,[1,0,6,18,122,600,3450]): for n from 0 to 18 do a[n + 7]:=(36864*(n + 1)*(n + 2)*(n + 3)*a[n] - 3072*(n + 2)*(n + 3)*(97*n + 142)*a[n + 1] - 64*(n + 3)*(4031*n^2 + 17601*n + 19504)*a[n + 2] - (26944*n^3 + 215856*n^2 + 498848*n + 243840)*a[n + 3] + (15912*n^3 + 173328*n^2 + 687072*n + 997512)*a[n + 4] + (1868*n^3 + 28044*n^2 + 143368*n + 249960)*a[n + 5] - 2*(n + 6)*(115*n^2 + 1080*n + 2273)*a[n + 6])/(3*(n + 7)*(3*n + 19)*(3*n + 20)) od;
a:=n->add(add(binomial(n,m)*binomial(n,2*n-4*m+2*k)*binomial(2*n-4*m+2*k,k),m=ceil((n+2*k)/4)..floor((n+k)/2)),k=0..n);
-
f[n_] := Sum[ Binomial[n, m] Binomial[n, 2 n - 4 m + 2 k] Binomial[2 n - 4 m + 2 k, k], {k, 0, n}, {m, Ceiling[(n + 2 k)/4], Floor[(n + k)/2]}]; Array[f, 21, -1]
A181072
Consider 1-D random walk with jumps up to the fourth neighbor, i.e., set of possible jumps is {-4,-3,-2,-1,+1,+2,+3,+4}. Sequence gives number of paths of length n ending at origin.
Original entry on oeis.org
1, 0, 8, 36, 296, 2030, 15200, 112308, 845320, 6386076, 48582438, 371138460, 2846769992, 21905812786, 169041544568, 1307602672376, 10136307859080, 78721657307320, 612391634798156, 4770987007606224, 37219155177139126, 290702353768374570, 2273036878855399720
Offset: 0
-
a:=n->add(binomial(n,k)*(add(binomial(n,m)*binomial(n,2*k+2*n-5*m),m=ceil((2*k+n)/5)..floor(2*(n+k)/5))),k=0..n);
A372411
Coefficient of x^n in the expansion of ( (1-x+x^2)^2 / (1-x)^3 )^n.
Original entry on oeis.org
1, 1, 7, 34, 183, 1001, 5578, 31459, 179063, 1026493, 5918007, 34277728, 199309146, 1162682314, 6801575641, 39885002534, 234384591991, 1379936226605, 8137835460115, 48062073927739, 284233390132183, 1682950066882489, 9975692904121556, 59190095764321975
Offset: 0
-
a(n, s=2, t=2, u=3) = sum(k=0, n\s, binomial(t*n, k)*binomial((u-t+1)*n-(s-1)*k-1, n-s*k));
Showing 1-7 of 7 results.
Comments