A061547
Number of 132 and 213-avoiding derangements of {1,2,...,n}.
Original entry on oeis.org
1, 0, 1, 2, 6, 10, 26, 42, 106, 170, 426, 682, 1706, 2730, 6826, 10922, 27306, 43690, 109226, 174762, 436906, 699050, 1747626, 2796202, 6990506, 11184810, 27962026, 44739242, 111848106, 178956970, 447392426, 715827882, 1789569706, 2863311530, 7158278826
Offset: 0
a(4)=6 because the only 132 and 213-avoiding permutations of {1,2,3,4} without fixed points are: 2341, 3412, 3421, 4123, 4312 and 4321.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- F. Al-Kharousi, R. Kehinde and A. Umar, Combinatorial results for certain semigroups of partial isometries of a finite chain, The Australasian Journal of Combinatorics, Volume 58 (3) (2014), 363-375.
- J. Brillhart and P. Morton, A case study in mathematical research: the Golay-Rudin-Shapiro sequence, Amer. Math. Monthly, 103 (1996) 854-869 (contains the sequence of the odd-subscripted terms and that of the even-subscripted terms).
- Emeric Deutsch, Derangements That Don't Rise Too Fast: 10902, Amer. Math. Monthly, Vol. 110, No. 7 (2003), pp. 639-640.
- K. Dilcher and K. B. Stolarsky, Stern polynomials and double-limit continued fractions, Acta Arithmetica 140 (2009), 119-134
- R. Kehinde and A. Umar, On the semigroup of partial isometries of a finite chain, arXiv:1101.0049 [math.GR], 2010.
- T. Mansour and A. Robertson, Refined restricted permutations avoiding subsets of patterns of length three, arXiv:math/0204005 [math.CO], 2002
- Index entries for linear recurrences with constant coefficients, signature (1,4,-4).
Moore lower bound on the order of a (k,g) cage:
A198300 (square); rows:
A000027 (k=2),
A027383 (k=3),
A062318 (k=4), this sequence (k=5),
A198306 (k=6),
A198307 (k=7),
A198308 (k=8),
A198309 (k=9),
A198310 (k=10),
A094626 (k=11); columns:
A020725 (g=3),
A005843 (g=4),
A002522 (g=5),
A051890 (g=6),
A188377 (g=7). -
Jason Kimberley, Oct 31 2011
A137241
Number triples (k,3-k,2-2k), concatenated for k=0, 1, 2, 3,...
Original entry on oeis.org
0, 3, 2, 1, 2, 0, 2, 1, -2, 3, 0, -4, 4, -1, -6, 5, -2, -8, 6, -3, -10, 7, -4, -12, 8, -5, -14, 9, -6, -16, 10, -7, -18, 11, -8, -20, 12, -9, -22, 13, -10, -24, 14, -11, -26, 15, -12, -28, 16, -13, -30, 17, -14, -32, 18, -15, -34, 19, -16, -36, 20, -17, -38, 21, -18, -40
Offset: 0
The triples (k,3-k,2-2k) are (0,3,2), (1,2,0), (2,1,-2), (3,0,-4),...
-
CoefficientList[Series[x*(3 + 2*x + x^2 - 4*x^3 - 4*x^4)/((x - 1)^2*(1 + x + x^2)^2), {x, 0, 50}], x] (* G. C. Greubel, Sep 28 2017 *)
Table[{n,3-n,2-2n},{n,0,30}]//Flatten (* or *) LinearRecurrence[ {0,0,2,0,0,-1},{0,3,2,1,2,0},100] (* Harvey P. Dale, Jun 23 2019 *)
-
x='x+O('x^50); Vec(x*(3+2*x+x^2-4*x^3-4*x^4)/((x-1)^2*(1+x +x^2 )^2)) \\ G. C. Greubel, Sep 28 2017
A249992
Expansion of 1/((1+x)*(1+2*x)*(1-3*x)).
Original entry on oeis.org
1, 0, 7, 6, 49, 84, 379, 882, 3157, 8448, 27391, 78078, 242425, 710892, 2165443, 6430794, 19423453, 58008216, 174548935, 522598230, 1569891841, 4705481220, 14124832267, 42357719586, 127106713189, 381253030704, 1143893309839, 3431411494062, 10294771353097
Offset: 0
Cf.
A000392: expansion of x^3/((1-x)*(1-2*x)*(1-3*x)).
Cf.
A091002: expansion of x^2/((1-x)*(1+2*x)*(1-3*x)).
Cf.
A094705: expansion of x/((1+x)*(1-2*x)*(1-3*x)).
-
[(3^(n+2) + (-1)^n*(2^(n+4) - 5))/20: n in [0..50]]; // G. C. Greubel, Jul 21 2022
-
seq((9/20)*3^n+(4/5)*(-2)^n-(1/4)*(-1)^n, n=0 .. 100); # Robert Israel, Dec 28 2014
-
LinearRecurrence[{0, 7, 6}, {1, 0, 7}, 29] (* Jean-François Alcover, Oct 05 2017 *)
CoefficientList[Series[1/((1+x)(1+2x)(1-3x)),{x,0,30}],x] (* Harvey P. Dale, May 26 2020 *)
-
Vec(1/((1+x)*(1+2*x)*(1-3*x)) + O(x^50)) \\ Michel Marcus, Dec 28 2014
-
[(3^(n+2) +(-1)^n*(2^(n+4) -5))/20 for n in (0..50)] # G. C. Greubel, Jul 21 2022
A099621
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k,k+1) * 3^(n-k-1)*(4/3)^k.
Original entry on oeis.org
0, 1, 6, 31, 144, 637, 2730, 11467, 47508, 194953, 794574, 3222583, 13023192, 52491349, 211161138, 848231779, 3403688796, 13647040225, 54685016022, 219030629455, 876994213920, 3510591943981, 14050213040826, 56224387958011
Offset: 0
-
List([0..30], n-> (4^(n+2)-5*3^(n+1)-(-1)^n)/20) # G. C. Greubel, Jun 06 2019
-
[(4^(n+2)-5*3^(n+1)-(-1)^n)/20: n in [0..30]]; // G. C. Greubel, Jun 06 2019
-
Table[Sum[Binomial[n-k,k+1]3^(n-k-1) (4/3)^k,{k,0,Floor[n/2]}],{n,0,25}] (* or *) LinearRecurrence[{6,-5,-12},{0,1,6},30] (* Harvey P. Dale, Dec 13 2012 *)
Table[(4^(n+2)-5*3^(n+1)-(-1)^n)/20, {n,0,30}] (* G. C. Greubel, Jun 06 2019 *)
-
vector(30, n, n--; (4^(n+2)-5*3^(n+1)-(-1)^n)/20) \\ G. C. Greubel, Jun 06 2019
-
[(4^(n+2)-5*3^(n+1)-(-1)^n)/20 for n in (0..30)] # G. C. Greubel, Jun 06 2019
A004054
Expansion of (1-x)/((1+x)*(1-2*x)*(1-3*x)).
Original entry on oeis.org
1, 3, 11, 35, 111, 343, 1051, 3195, 9671, 29183, 87891, 264355, 794431, 2386023, 7163531, 21501515, 64526391, 193622863, 580955971, 1743042675, 5229477551, 15689131703, 47068793211, 141209175835, 423633119911, 1270910544543, 3812754003251, 11438306748995
Offset: 0
A249999
Expansion of 1/((1-x)^2*(1-2*x)*(1-3*x)).
Original entry on oeis.org
1, 7, 32, 122, 423, 1389, 4414, 13744, 42245, 128771, 390396, 1179366, 3554467, 10696153, 32153978, 96592988, 290041089, 870647535, 2612991160, 7841070610, 23527406111, 70590606917, 211788597942, 635399348232, 1906265153533, 5718929678299, 17157057470324, 51471709281854
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Anthony G. Shannon, Hakan Akkuş, Yeşim Aküzüm, Ömür Deveci, and Engin Özkan, A partial recurrence Fibonacci link, Notes Num. Theor. Disc. Math. (2024) Vol. 30, No. 3, 530-537. See Table 2, p. 534.
- Index entries for linear recurrences with constant coefficients, signature (7,-17,17,-6).
-
[(2*n +9 -2^(n+5) +3^(n+3))/4: n in [0..50]]; // G. C. Greubel, Jul 21 2022
-
LinearRecurrence[{7,-17,17,-6}, {1,7,32,122}, 50] (* G. C. Greubel, Jul 21 2022 *)
CoefficientList[Series[1/((1-x)^2(1-2x)(1-3x)),{x,0,30}],x] (* Harvey P. Dale, Feb 11 2025 *)
-
[(2*n+9 -2^(n+5) +3^(n+3))/4 for n in (0..50)] # G. C. Greubel, Jul 21 2022
A099622
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k-1)*4^(n-k-1)*(5/4)^k.
Original entry on oeis.org
0, 1, 8, 53, 316, 1785, 9744, 51997, 273092, 1417889, 7299160, 37334661, 190028748, 963565513, 4871514656, 24572321645, 123720601684, 622038982257, 3123938806632, 15674669614549, 78593250398300, 393845861293721
Offset: 0
-
[(5^(n+2) -6*4^(n+1) -(-1)^n)/30: n in [0..40]]; // G. C. Greubel, Jul 22 2022
-
LinearRecurrence[{8,-11,-20},{0,1,8},30] (* Harvey P. Dale, Nov 05 2017 *)
-
[(5^(n+2) -6*4^(n+1) -(-1)^n)/30 for n in (0..40)] # G. C. Greubel, Jul 22 2022
A155118
Array T(n,k) read by antidiagonals: the k-th term of the n-th iterated differences of A140429.
Original entry on oeis.org
0, 1, 1, 1, 2, 3, 3, 4, 6, 9, 5, 8, 12, 18, 27, 11, 16, 24, 36, 54, 81, 21, 32, 48, 72, 108, 162, 243, 43, 64, 96, 144, 216, 324, 486, 729, 85, 128, 192, 288, 432, 648, 972, 1458, 2187, 171, 256, 384, 576, 864, 1296, 1944, 2916, 4374, 6561, 341, 512, 768, 1152, 1728, 2592, 3888, 5832, 8748, 13122, 19683
Offset: 0
The array starts in row n=0 with columns k>=0 as:
0 1 3 9 27 81 243 729 2187 ... A140429;
1 2 6 18 54 162 486 1458 4374 ... A025192;
1 4 12 36 108 324 972 2916 8748 ... A003946;
3 8 24 72 216 648 1944 5832 17496 ... A080923;
5 16 48 144 432 1296 3888 11664 34992 ... A257970;
11 32 96 288 864 2592 7776 23328 69984 ...
21 64 192 576 1728 5184 15552 46656 139968 ...
Antidiagonal triangle begins as:
0;
1, 1;
1, 2, 3;
3, 4, 6, 9;
5, 8, 12, 18, 27;
11, 16, 24, 36, 54, 81;
21, 32, 48, 72, 108, 162, 243;
43, 64, 96, 144, 216, 324, 486, 729;
85, 128, 192, 288, 432, 648, 972, 1458, 2187; - _G. C. Greubel_, Mar 25 2021
-
t:= func< n,k | k eq 0 select (2^(n-k) -(-1)^(n-k))/3 else 2^(n-k)*3^(k-1) >;
[t(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 25 2021
-
T:=proc(n,k)if(k>0)then return 2^n*3^(k-1):else return (2^n - (-1)^n)/3:fi:end:
for d from 0 to 8 do for m from 0 to d do print(T(d-m,m)):od:od: # Nathaniel Johnston, Apr 13 2011
-
t[n_, k_]:= If[k==0, (2^(n-k) -(-1)^(n-k))/3, 2^(n-k)*3^(k-1)];
Table[t[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 25 2021 *)
-
def A155118(n,k): return (2^(n-k) -(-1)^(n-k))/3 if k==0 else 2^(n-k)*3^(k-1)
flatten([[A155118(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 25 2021
Showing 1-8 of 8 results.
Comments