cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A007680 a(n) = (2n+1)*n!.

Original entry on oeis.org

1, 3, 10, 42, 216, 1320, 9360, 75600, 685440, 6894720, 76204800, 918086400, 11975040000, 168129561600, 2528170444800, 40537905408000, 690452066304000, 12449059983360000, 236887827111936000, 4744158915944448000, 99748982335242240000
Offset: 0

Views

Author

Keywords

Comments

Denominators in series for sqrt(Pi/4)*erf(x): sqrt(Pi/4)*erf(x)= x/1 - x^3/3 + x^5/10 - x^7/42 + x^9/216 -+ ...
Appears to be the BinomialMean transform of A000354 (after truncating the first term of A000354). (See A075271 for the definition of BinomialMean.) - John W. Layman, Apr 16 2003
Number of permutations p of {1,2,...,n+2} such that max|p(i)-i|=n+1. Example: a(1)=3 since only the permutations 312,231 and 321 of {1,2,3} satisfy the given condition. - Emeric Deutsch, Jun 04 2003
Stirling transform of A000670(n+1) = [3, 13, 75, 541, ...] is a(n) = [3, 10, 42, 216, ...]. - Michael Somos, Mar 04 2004
Stirling transform of a(n) = [2, 10, 42, 216, ...] is A052875(n+1) = [2, 12, 74, ...]. - Michael Somos, Mar 04 2004
A related sequence also arises in evaluating indefinite integrals of sec(x)^(2k+1), k=0, 1, 2, ... Letting u = sec(x) and d = sqrt(u^2-1), one obtains a(0) = log(u+d) 2*k*a(k) = (2*k-1)*u^(2*k-1)*d + a(k-1). Viewing these as polynomials in u gives 2^k*k!*a(k) = a(0) + d*Sum(i=0..k-1){ (2*i+1)*i!*2^i*u^(2*i+1) }, which is easily proved by induction. Apart from the power of 2, which could be incorporated into the definition of u (or by looking at erf(ix/2)/ i (i=sqrt(-1)), the sum's coefficients form our series and are the reciprocals of the power series terms for -sqrt(-Pi/4)*erf(ix/2)). This yields a direct but somewhat mysterious relationship between the power series of erf(x) and integrals involving sec(x). - William A. Huber (whuber(AT)quantdec.com), Mar 14 2002
When written in factoradic ("factorial base"), this sequence from a(1) onwards gives the smallest number containing two adjacent digits, increasing when read from left to right, whose difference is n-1. - Christian Perfect, May 03 2016
a(n-1)^2 is the number of permutations p of [1..2n] such that Sum_{i=1..2n} abs(p(i)-i) = 2n^2-2. - Fang Lixing, Dec 07 2018
A standard series for the calculation of coordinates on a clothoid (also called cornuspiral):
x = s*(a(0) - (tau^2/a(2)) + (tau^4/a(4)) - (tau^6/a(6)) + ...)
y = s*((tau/a(1)) + (tau^3/a(3)) - (tau^5/a(5)) + ...).
s is the arclength from the clothoids origin to the desired point p(x,y). The tangent at the clothoids origin intersects with the tangent at the point p(x,y) with an angle of tau. - Thomas Scheuerle, Oct 13 2021
a(n) = P_n(1) where P_n(x) is the Pidduck polynomials. - Michael Somos, May 27 2023

Examples

			G.f. = 1 + 3*x + 10*x^2 + 42*x^3 + 216*x^4 + 1320*x^5 + 9360*x^6 + ... - _Michael Somos_, Jan 01 2019
		

References

  • H. W. Gould, A class of binomial sums and a series transform, Utilitas Math., 45 (1994), 71-83.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • N. Wirth, Systematisches Programmieren, 1975, exercise 9.3

Crossrefs

From Johannes W. Meijer, Nov 12 2009: (Start)
Appears in A167546.
Equals the rows sums of A167556.
(End)

Programs

  • GAP
    a:=List([0..20],n->(2*n+1)*Factorial(n));; Print(a); # Muniru A Asiru, Jan 01 2019
  • Magma
    [(2*n+1)*Factorial(n): n in [0..20]]; // Vincenzo Librandi, Aug 20 2011
    
  • Maple
    [(2*n+1)*factorial(n)$n=0..20]; # Muniru A Asiru, Jan 01 2019
  • Mathematica
    Table[(2n + 1)*n!, {n, 0, 20}] (* Stefan Steinerberger, Apr 08 2006 *)
  • PARI
    {a(n) = if( n<0, 0, (2*n+1) * n!)}; /* Michael Somos, Mar 04 2004 */
    

Formula

E.g.f.: (1+x)/(1-x)^2.
This is the binomial mean transform of A000354 (after truncating the first term). See Spivey and Steil (2006). - Michael Z. Spivey (mspivey(AT)ups.edu), Feb 26 2006
E.g.f.: (of aerated sequence) 1+x^2/2+sqrt(pi)*(x+x^3/4)*exp(x^2/4)*ERF(x/2). - Paul Barry, Apr 11 2010
G.f.: 1 + x*G(0), where G(k)= 1 + x*(k+1)/(1 - (k+2)/(k+2 + (k+1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 08 2013
a(n-2) = (A208528(n)+A208529(n))/2, for n>=2. - Luis Manuel Rivera Martínez, Mar 05 2014
D-finite with recurrence: (-2*n+1)*a(n) +n*(2*n+1)*a(n-1)=0. - R. J. Mathar, Jan 27 2020
Sum_{n>=0} 1/a(n) = sqrt(Pi)*erfi(1)/2 = A019704 * A099288 = A347910. - Amiram Eldar, Oct 07 2020
Sum_{n>=0} (-1)^n/a(n) = A347909 . - R. J. Mathar, Sep 30 2021

A087654 Decimal expansion of D(1) where D(x) is the Dawson function.

Original entry on oeis.org

5, 3, 8, 0, 7, 9, 5, 0, 6, 9, 1, 2, 7, 6, 8, 4, 1, 9, 1, 3, 6, 3, 8, 7, 4, 2, 0, 4, 0, 7, 5, 5, 6, 7, 5, 4, 7, 9, 1, 9, 7, 5, 0, 0, 1, 7, 5, 3, 9, 3, 3, 3, 1, 8, 8, 7, 5, 2, 1, 9, 0, 9, 8, 0, 0, 2, 5, 6, 6, 5, 0, 3, 3, 3, 0, 5, 2, 7, 1, 0, 6, 2, 9, 7, 2, 6, 0, 8, 6, 1, 5, 0, 2, 7, 4, 3, 0, 8, 0, 9, 3, 8, 8, 9
Offset: 0

Views

Author

Benoit Cloitre, Sep 25 2003

Keywords

Examples

			0.5380795069127684191363874204075567547919750017539...
		

References

  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 42, page 407.

Programs

  • Mathematica
    RealDigits[ N[ Sqrt[Pi]*Erfi[1]/(2*E), 105]][[1]] (* Jean-François Alcover, Nov 08 2012 *)
    RealDigits[DawsonF[1], 10, 120][[1]] (* Amiram Eldar, Jun 25 2023 *)
  • PARI
    intnum(t=0, 1, exp(t^2))/exp(1) \\ Michel Marcus, Feb 28 2023

Formula

D(1) = (1/e)*Integral_{t=0..1} exp(t^2) dt.
Equals Integral_{x=0..oo} e^(-x^2) sin(2x) dx = 1F1(1;3/2;-1). - R. J. Mathar, Jul 10 2024
Equals A099288 * sqrt(Pi)/(2e) = A099288 *A019704 * A068985. - R. J. Mathar, Jul 10 2024

A347910 Decimal expansion of Integral_{x=0..1} exp(x^2) dx.

Original entry on oeis.org

1, 4, 6, 2, 6, 5, 1, 7, 4, 5, 9, 0, 7, 1, 8, 1, 6, 0, 8, 8, 0, 4, 0, 4, 8, 5, 8, 6, 8, 5, 6, 9, 8, 8, 1, 5, 5, 1, 2, 0, 8, 7, 0, 0, 9, 6, 2, 1, 6, 7, 3, 9, 1, 8, 5, 6, 6, 0, 1, 1, 4, 5, 8, 0, 2, 1, 8, 7, 6, 3, 3, 1, 4, 2, 9, 0, 9, 7, 9, 1, 7, 0, 8, 2, 1, 8, 9, 9, 8, 1, 2
Offset: 1

Views

Author

Jianing Song, Sep 18 2021

Keywords

Examples

			1.462651745907181608804048586856988155...
		

Crossrefs

Cf. A347909 (inverse integrand), A007680.

Programs

  • Mathematica
    RealDigits[(Sqrt[Pi]/2) Erfi[1], 10, 91][[1]]
  • PARI
    intnum(x=0, 1, exp(x^2)) \\ Michel Marcus, Sep 18 2021

Formula

Equals (sqrt(Pi)/2) * erfi(1) = (sqrt(Pi)/(2*i)) * erf(i).
Equals Sum_{k>=0} 1 / ((2*k + 1)*k!) . - Ilya Gutkovskiy, Sep 18 2021
Equals A019704 * A099288. - R. J. Mathar, Sep 30 2021

A307154 Decimal expansion of the fraction of occupied places on an infinite lattice cover with 3-length segments.

Original entry on oeis.org

8, 2, 3, 6, 5, 2, 9, 6, 3, 1, 7, 7, 3, 3, 8, 3, 3, 6, 9, 0, 0, 6, 7, 1, 8, 7, 7, 8, 1, 1, 6, 4, 7, 8, 8, 7, 2, 1, 3, 9, 2, 3, 6, 6, 2, 0, 5, 3, 9, 2, 9, 8, 6, 8, 0, 9, 1, 4, 3, 7, 2, 3, 5, 0, 0, 7, 1, 8, 2, 2, 0, 1, 8, 0, 9, 8, 1, 2, 0, 0, 7, 9, 0, 9, 0, 5, 5, 8, 9, 2, 6, 4, 8, 7, 4, 0, 3, 0, 3, 3, 7, 1, 9, 6, 3, 8, 5, 4, 5, 9, 2, 8, 8, 9, 7, 9, 3, 3, 4, 2, 4, 8, 8, 7, 7, 2, 1, 2, 7, 1, 9, 6
Offset: 0

Views

Author

Philipp O. Tsvetkov, Mar 27 2019

Keywords

Comments

Solution of the discrete parking problem when infinite lattice randomly filled with 3-length segments.
Solution of the discrete parking problem when infinite lattice randomly filled with 2-length segments is equal to 1-1/e^2 (see A219863).
Also, the limit of a(n) = (3 + 2*(n-3)*a(n-3) + (n-1)*(n-3)*a(n-1))/(n*(n-2)); a(0) = 0; a(1) = 0; a(2) = 0 as n tends to infinity.
If the length of the segments that randomly cover infinite lattice tends to infinity, then the fraction of occupied places is equal to Rényi's parking constant (see A050996).

Examples

			0.8236529631773383369006718778116478872139236620539298680914372350071822...
		

Crossrefs

Programs

  • Maple
    evalf(3*sqrt(Pi)*(erfi(2)-erfi(1))/(2*exp(4)), 120) # Vaclav Kotesovec, Mar 28 2019
  • Mathematica
    N[-((3 DawsonF[1])/E^3) + 3 DawsonF[2], 200] // RealDigits
  • PARI
    -imag(3*sqrt(Pi)*(erfc(2*I) - erfc(1*I)) / (2*exp(4))) \\ Michel Marcus, May 10 2019

Formula

Equals 3*(Dawson(2) - Dawson(1)/e^3).
Equals 3*sqrt(Pi)*(erfi(2) - erfi(1)) / (2*exp(4)).

A351401 Decimal expansion of erfi(1)/e, where erfi is the imaginary error function.

Original entry on oeis.org

6, 0, 7, 1, 5, 7, 7, 0, 5, 8, 4, 1, 3, 9, 3, 7, 2, 9, 1, 1, 5, 0, 3, 8, 2, 3, 5, 8, 0, 0, 7, 4, 4, 9, 2, 1, 1, 6, 1, 2, 2, 0, 9, 2, 8, 6, 6, 5, 1, 5, 6, 9, 1, 5, 9, 1, 6, 9, 4, 4, 1, 9, 1, 9, 2, 7, 2, 0, 8, 7, 6, 9, 4, 9, 2, 0, 2, 8, 1, 1, 8, 2, 0, 1, 6, 3, 9, 1, 3, 1, 6, 5, 2, 6, 3, 3, 2, 6, 8, 5, 4, 8, 1, 0, 4
Offset: 0

Views

Author

Amiram Eldar, Feb 10 2022

Keywords

Comments

The alternating sum of reciprocals of the factorials of the positive half-integers.

Examples

			0.60715770584139372911503823580074492116122092866515...
		

References

  • Rudolf Gorenflo, Anatoly A. Kilbas, Francesco Mainardi, and Sergei Rogosin, Mittag-Leffler Functions, Related Topics and Applications, New York, NY: Springer, 2020. See p. 94, eq. (4.12.9.6).
  • Constantin Milici, Gheorghe Drăgănescu, and J. Tenreiro Machado, Fractional Differential Equations, Introduction to Fractional Differential Equations, Springer, Cham, 2019. See p. 12, eq. (1.9).

Crossrefs

Programs

  • Maple
    evalf(exp(-1)*erfi(1), 120);  # Alois P. Heinz, Feb 10 2022
  • Mathematica
    RealDigits[Erfi[1]/E, 10, 100][[1]]
  • PARI
    real(-I*(1.0-erfc(I)))/exp(1) \\ Michel Marcus, Feb 10 2022

Formula

Equals Sum_{k>=0} (-1)^k/(k + 1/2)! = Sum_{k>=1} (-1)^(k+1)/Gamma(k + 1/2).
Equals E_{1, 3/2}(-1), where E_{a,b}(z) is the two-parameter Mittag-Leffler function.
Equals (-1/sqrt(Pi)) * Sum_{k>=1} (-2)^k/(2*k-1)!!.
Equals A068985 * A099288.

A374529 Decimal expansion of sqrt(Pi)/e.

Original entry on oeis.org

6, 5, 2, 0, 4, 9, 3, 3, 2, 1, 7, 3, 2, 9, 2, 1, 8, 3, 0, 5, 9, 1, 5, 8, 6, 1, 3, 2, 4, 7, 0, 6, 7, 2, 4, 9, 1, 8, 5, 0, 4, 0, 6, 9, 7, 6, 1, 9, 4, 2, 8, 2, 1, 5, 8, 0, 7, 9, 7, 3, 2, 0, 2, 0, 0, 8, 3, 4, 7, 4, 2, 4, 4, 3, 4, 3, 1, 8, 8, 7, 4, 2, 8, 0, 7, 5, 5, 0, 6, 6, 6, 4, 0, 6, 5, 0, 5, 2, 3
Offset: 0

Views

Author

R. J. Mathar, Jul 10 2024

Keywords

Examples

			0.652049332173292183059158613247067249185... = 1/ 1.5336262... = 1.30409866... / 2 .
		

Crossrefs

Programs

  • Maple
    sqrt(Pi)/exp(1) ; evalf(%) ;
  • Mathematica
    RealDigits[Sqrt[Pi]/E, 10, 120][[1]] (* Amiram Eldar, Jul 15 2024 *)
  • PARI
    sqrt(Pi)/e \\ Stefano Spezia, May 22 2025

Formula

Equals A002161 * A068985 = 2*A087654 / A099288.
Showing 1-6 of 6 results.