A099558
Antidiagonal sums of the triangle A099557.
Original entry on oeis.org
1, 1, 2, 3, 4, 6, 9, 14, 22, 34, 52, 79, 120, 183, 280, 429, 657, 1005, 1536, 2347, 3587, 5484, 8386, 12824, 19609, 29981, 45837, 70079, 107145, 163820, 250476, 382969, 585541, 895258, 1368795, 2092808, 3199790, 4892313, 7480094, 11436670
Offset: 0
A005314
For n = 0, 1, 2, a(n) = n; thereafter, a(n) = 2*a(n-1) - a(n-2) + a(n-3).
Original entry on oeis.org
0, 1, 2, 3, 5, 9, 16, 28, 49, 86, 151, 265, 465, 816, 1432, 2513, 4410, 7739, 13581, 23833, 41824, 73396, 128801, 226030, 396655, 696081, 1221537, 2143648, 3761840, 6601569, 11584946, 20330163, 35676949, 62608681, 109870576, 192809420, 338356945, 593775046
Offset: 0
G.f. = x + 2*x^2 + 3*x^3 + 5*x^4 + 9*x^5 + 16*x^6 + 28*x^7 + 49*x^8 + ...
From _Gus Wiseman_, Nov 25 2019: (Start)
a(n) is the number of subsets of {1..n} containing n such that if x and x + 2 are both in the subset, then so is x + 1. For example, the a(1) = 1 through a(5) = 9 subsets are:
{1} {2} {3} {4} {5}
{1,2} {2,3} {1,4} {1,5}
{1,2,3} {3,4} {2,5}
{2,3,4} {4,5}
{1,2,3,4} {1,2,5}
{1,4,5}
{3,4,5}
{2,3,4,5}
{1,2,3,4,5}
(End)
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..400
- Isha Agarwal, Matvey Borodin, Aidan Duncan, Kaylee Ji, Tanya Khovanova, Shane Lee, Boyan Litchev, Anshul Rastogi, Garima Rastogi, and Andrew Zhao, From Unequal Chance to a Coin Game Dance: Variants of Penney's Game, arXiv:2006.13002 [math.HO], 2020.
- Marilena Barnabei, Flavio Bonetti, Niccolò Castronuovo, and Matteo Silimbani, Permutations avoiding a simsun pattern, The Electronic Journal of Combinatorics (2020) Vol. 27, Issue 3, P3.45.
- P. Chinn and S. Heubach, Integer Sequences Related to Compositions without 2's, J. Integer Seqs., Vol. 6, 2003.
- Hung Viet Chu and Zachary Louis Vasseur, Schreier Sets of Multiples of an Integer, Linear Recurrence, and Pascal Triangle, arXiv:2506.14312 [math.CO], 2025. See Table 1 p. 2.
- Christian Ennis, William Holland, Omer Mujawar, Aadit Narayanan, Frank Neubrander, Marie Neubrander, and Christina Simino, Words in Random Binary Sequences I, arXiv:2107.01029 [math.GM], 2021.
- R. L. Graham and N. J. A. Sloane, Anti-Hadamard matrices, Linear Alg. Applic., 62 (1984), 113-137.
- Jia Huang, A coin flip game and generalizations of Fibonacci numbers, arXiv:2501.07463 [math.CO], 2025. See pp. 8, 10.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 426
- L. A. Medina and A. Straub, On multiple and infinite log-concavity, 2013, preprint Annals of Combinatorics, March 2016, Volume 20, Issue 1, pp 125-138.
- Denis Neiter and Amsha Proag, Links Between Sums Over Paths in Bernoulli's Triangles and the Fibonacci Numbers, Journal of Integer Sequences, Vol. 19 (2016), Article 16.8.3.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Bojan Vučković and Miodrag Živković, Row Space Cardinalities Above 2^(n - 2) + 2^(n - 3), ResearchGate, January 2017, p. 3.
- Index entries for linear recurrences with constant coefficients, signature (2,-1,1).
Equals row sums of triangle
A099557.
Equals row sums of triangle
A224838.
Cf.
A011973 (starting with offset 1 = Falling diagonal sums of triangle with rows displayed as centered text).
First differences of
A005251, shifted twice to the left.
-
a005314 n = a005314_list !! n
a005314_list = 0 : 1 : 2 : zipWith (+) a005314_list
(tail $ zipWith (-) (map (2 *) $ tail a005314_list) a005314_list)
-- Reinhard Zumkeller, Oct 14 2011
-
[0] cat [n le 3 select n else 2*Self(n-1) - Self(n-2) + Self(n-3):n in [1..35]]; // Marius A. Burtea, Oct 24 2019
-
R:=PowerSeriesRing(Integers(), 36); [0] cat Coefficients(R!( x/(1-2*x+x^2-x^3))); // Marius A. Burtea, Oct 24 2019
-
A005314 := proc(n)
option remember ;
if n <=2 then
n;
else
2*procname(n-1)-procname(n-2)+procname(n-3) ;
end if;
end proc:
seq(A005314(n),n=0..20) ; # R. J. Mathar, Feb 25 2024
-
LinearRecurrence[{2, -1, 1}, {0, 1, 2}, 100] (* Vladimir Joseph Stephan Orlovsky, Jul 03 2011 *)
Table[Sum[Binomial[n - Floor[(k + 1)/2], n - Floor[(3 k - 1)/2]], {k, 0, n}], {n, 0, 100}] (* John Molokach, Jul 21 2013 *)
Table[Sum[Binomial[n - Floor[(4 n + 15 - 6 k + (-1)^k)/12], n - Floor[(4 n + 15 - 6 k + (-1)^k)/12] - Floor[(2 n - 1)/3] + k - 1], {k, 1, Floor[(2 n + 2)/3]}], {n, 0, 100}] (* John Molokach, Jul 25 2013 *)
a[ n_] := If[ n < 0, SeriesCoefficient[ x^2 / (1 - x + 2 x^2 - x^3), {x, 0, -n}], SeriesCoefficient[ x / (1 - 2 x + x^2 - x^3), {x, 0, n}]]; (* Michael Somos, Dec 13 2013 *)
RecurrenceTable[{a[0]==0,a[1]==1,a[2]==2,a[n]==2a[n-1]-a[n-2]+a[n-3]},a,{n,40}] (* Harvey P. Dale, May 13 2018 *)
Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&!MatchQ[#,{_,x_,y_,_}/;x+2==y]&]],{n,0,10}] (* Gus Wiseman, Nov 25 2019 *)
-
{a(n) = sum(k=0, (2*n-1)\3, binomial(n-1-k\2, k))}
-
{a(n) = if( n<0, polcoeff( x^2 / (1 - x + 2*x^2 - x^3) + x * O(x^-n), -n), polcoeff( x / (1 - 2*x + x^2 - x^3) + x * O(x^n), n))}; /* Michael Somos, Sep 18 2012 */
-
def A005314(n): return sum( binomial(n-k, 2*k+1) for k in range(floor((n+2)/3)) )
[A005314(n) for n in range(51)] # G. C. Greubel, Nov 10 2023
Showing 1-2 of 2 results.
Comments