cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A003266 Product of first n nonzero Fibonacci numbers F(1), ..., F(n).

Original entry on oeis.org

1, 1, 1, 2, 6, 30, 240, 3120, 65520, 2227680, 122522400, 10904493600, 1570247078400, 365867569267200, 137932073613734400, 84138564904377984000, 83044763560621070208000, 132622487406311849122176000, 342696507457909818131702784000
Offset: 0

Views

Author

Keywords

Comments

Equals right border of unsigned triangle A158472. - Gary W. Adamson, Mar 20 2009
Three closely related sequences are A194157 (product of first n nonzero F(2*n)), A194158 (product of first n nonzero F(2*n-1)) and A123029 (a(2*n) = A194157(n) and a(2*n-1) = A194158(n)). - Johannes W. Meijer, Aug 21 2011
a(n+1)^2 is the number of ways to tile this pyramid of height n with squares and dominoes, where vertical dominoes can only appear (if at all) in the central column. Here is a pyramid of height n=4,
_
||_
||_||
||_|||_|_
|||_|||_|_|,
and here is one of the a(5)^2 = 900 possible such tilings with our given restrictions:
_
||_||
|__|_|_|_
||__|___|||. - Greg Dresden and Jiayi Liu, Aug 23 2024

Examples

			a(5) = 30 because the first 5 Fibonacci numbers are 1, 1, 2, 3, 5 and 1 * 1 * 2 * 3 * 5 = 30.
a(6) = 240 because 8 is the sixth Fibonacci number and a(5) * 8 = 240.
a(7) = 3120 because 13 is the seventh Fibonacci number and a(6) * 13 = 3120.
G.f. = 1 + x + x^2 + 2*x^3 + 6*x^4 + 30*x^5 + 240*x^6 + 3120*x^7 + ...
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, second edition, Addison Wesley, p 597
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A123741 (for Fibonacci second version), A002110 (for primes), A070825 (for Lucas), A003046 (for Catalan), A126772 (for Padovan), A069777 (q-factorial numbers for sums of powers). - Johannes W. Meijer, Aug 21 2011

Programs

  • Haskell
    a003266 n = a003266_list !! (n-1)
    a003266_list = scanl1 (*) $ tail a000045_list
    -- Reinhard Zumkeller, Sep 03 2013
    
  • Maple
    with(combinat): A003266 := n-> mul(fibonacci(i),i=1..n): seq(A003266(n), n=0..20);
  • Mathematica
    Rest[FoldList[Times,1,Fibonacci[Range[20]]]] (* Harvey P. Dale, Jul 11 2011 *)
    a[ n_] := If[ n < 0, 0, Fibonorial[n]]; (* Michael Somos, Oct 23 2017 *)
    Table[Round[GoldenRatio^(n(n-1)/2) QFactorial[n, GoldenRatio-2]], {n, 20}] (* Vladimir Reshetnikov, Sep 14 2016 *)
  • PARI
    a(n)=prod(i=1,n,fibonacci(i)) \\ Charles R Greathouse IV, Jan 13 2012
    
  • Python
    from itertools import islice
    def A003266_gen(): # generator of terms
        a,b,c = 1,1,1
        while True:
            yield c
            c *= a
            a, b = b, a+b
    A003266_list = list(islice(A003266_gen(),20)) # Chai Wah Wu, Jan 11 2023

Formula

a(n) is asymptotic to C*phi^(n*(n+1)/2)/sqrt(5)^n where phi = (1 + sqrt(5))/2 is the golden ratio and the decimal expansion of C is given in A062073. - Benoit Cloitre, Jan 11 2003
a(n+3) = a(n+1)*a(n+2)/a(n) + a(n+2)^2/a(n+1). - Robert Israel, May 19 2014
a(0) = 1 by convention since empty products equal 1. - Michael Somos, Oct 06 2014
0 = a(n)*(+a(n+1)*a(n+3) - a(n+2)^2) + a(n+2)*(-a(n+1)^2) for all n >= 0. - Michael Somos, Oct 06 2014
Sum_{n>=1} 1/a(n) = A101689. - Amiram Eldar, Oct 27 2020
Sum_{n>=1} (-1)^(n+1)/a(n) = A135598. - Amiram Eldar, Apr 12 2021
a(n) = (2/sqrt(5))^n * Product_{j=1..n} i^j*sinh(c*j), where c = arccsch(2) - i*Pi/2. - Peter Luschny, Jul 07 2025

Extensions

a(0)=1 prepended by Alois P. Heinz, Oct 12 2016

A176343 a(n) = Fibonacci(n)*a(n-1) + 1, a(0) = 0.

Original entry on oeis.org

0, 1, 2, 5, 16, 81, 649, 8438, 177199, 6024767, 331362186, 29491234555, 4246737775921, 989489901789594, 373037692974676939, 227552992714552932791, 224594803809263744664718, 358677901683394200229554647, 926823697949890613393169207849
Offset: 0

Views

Author

Roger L. Bagula, Apr 15 2010

Keywords

Crossrefs

Programs

  • GAP
    a:= function(n)
        if n=0 then return 0;
        else return 1 + Fibonacci(n)*a(n-1);
        fi; end;
    List([0..20], n-> a(n) ); # G. C. Greubel, Dec 07 2019
  • Magma
    function a(n)
      if n eq 0 then return 0;
      else return 1 + Fibonacci(n)*a(n-1);
      end if; return a; end function;
    [a(n): n in [0..20]]; // G. C. Greubel, Dec 07 2019
    
  • Maple
    with(combinat);
    a:= proc(n) option remember;
          if n=0 then 0
        else 1 + fibonacci(n)*a(n-1)
          fi; end:
    seq( a(n), n=0..20); # G. C. Greubel, Dec 07 2019
  • Mathematica
    a[n_]:= a[n]= If[n==0, 0, Fibonacci[n]*a[n-1] +1]; Table[a[n], {n,0,20}]
  • PARI
    a(n) = if(n==0, 0, 1 + fibonacci(n)*a(n-1) ); \\ G. C. Greubel, Dec 07 2019
    
  • Sage
    def a(n):
        if (n==0): return 0
        else: return 1 + fibonacci(n)*a(n-1)
    [a(n) for n in (0..20)] # G. C. Greubel, Dec 07 2019
    

Formula

a(n) = Fibonacci(n)*a(n-1) + 1, a(0) = 0.
a(n) ~ c * ((1+sqrt(5))/2)^(n^2/2+n/2) / 5^(n/2), where c = A062073 * A101689 = 3.317727324507285486862890025085971028467... is product of Fibonacci factorial constant (see A062073) and Sum_{n>=1} 1/(Product_{k=1..n} A000045(k) ). - Vaclav Kotesovec, Feb 20 2014

A130820 Decimal expansion of number whose Engel expansion is given by the sequence: 1,1,2,2,3,3,4,4,...ceiling(n/2),...

Original entry on oeis.org

2, 8, 7, 0, 2, 2, 2, 1, 5, 6, 9, 7, 3, 3, 9, 6, 3, 3, 0, 8, 1, 9, 4, 5, 8, 8, 6, 5, 8, 1, 1, 1, 9, 9, 6, 0, 1, 2, 4, 0, 3, 1, 9, 2, 6, 2, 2, 8, 0, 9, 9, 5, 7, 0, 1, 2, 0, 3, 1, 2, 7, 7, 3, 6, 2, 7, 2, 8, 5, 0, 3, 8, 0, 7, 6, 8, 0, 3, 7, 5, 2, 7, 8, 4, 5, 6, 3, 9, 2, 3, 6, 1, 5, 0, 7, 1, 4, 8, 2, 4
Offset: 1

Views

Author

Stephen Casey (hexomino(AT)gmail.com), Jul 17 2007

Keywords

Examples

			2.8702221569733963308194588658111996012403192622809957012...
		

References

  • Engel, F. "Entwicklung der Zahlen nach Stammbruechen" Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg. pp. 190-191, 1913.

Crossrefs

Programs

  • Maple
    evalf(BesselI(0, 2) + BesselI(1, 2) - 1, 100); # Peter Bala, Jul 02 2016
  • Mathematica
    First@ RealDigits@ N[Sum[1/Product[Ceiling[r/2], {r, n}], {n, 1000}], 100] (* Original program amended to generate output by Michael De Vlieger, Jul 03 2016 *)
    RealDigits[3 - HypergeometricPFQ[{1, 1}, {3, 3, 3}, 1]/8, 10, 100][[1]] (* Vaclav Kotesovec, Jul 03 2016 *)

Formula

From Peter Bala, Jul 01 2016: (Start)
Constant c = 1/1 + 1/(1*1) + 1/(1*1*2) + 1/(1*1*2*2) + 1/(1*1*2*2*3) + 1/(1*1*2*2*3*3) + ... = Sum_{n >= 1} binomial(n,floor(n/2))/n!.
Alternative series representations:
c = 3 - Sum_{n >= 2} 1/(n*(n - 1)*n!^2);
c = 1 + Sum_{n >= 1} (n + 2)/(n!*(n + 1)!);
c = 5/3 + 1/3*Sum_{n >= 2} (n + 1)*(n + 2)/n!^2;
c = A070910 + A096789 - 1.
Continued fraction: c = 3 - 1/(8 - 4/(14 - 9/(32 - ... - (n-1)^2/(n^2 + n + 2 - ...)))). See comments in A141827. (End)

A238244 A recursive sequence: a(n) = Fibonacci(n)*a(n-1) + 3.

Original entry on oeis.org

1, 4, 11, 36, 183, 1467, 19074, 400557, 13618941, 749041758, 66664716465, 9599719170963, 2236734566834382, 843248931696562017, 514381848334902830373, 507694884306549093578154, 810788730237558902444311941, 2095078078933852203916102055547
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 20 2014

Keywords

Comments

Generally, sequence a(n) = Fibonacci(n)*a(n-1) + p, with a(1)=1 and fixed p, is asymptotic to c(p) * ((1+sqrt(5))/2)^(n^2/2+n/2) / 5^(n/2), where constant c(p) = A062073 * (p*A101689 - p + 1).

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n]==Fibonacci[n]*a[n-1]+3,a[1]==1},a,{n,1,20}]
    nxt[{n_,a_}]:={n+1,a*Fibonacci[n+1]+3}; NestList[nxt,{1,1},20][[;;,2]] (* Harvey P. Dale, Sep 04 2024 *)

Formula

a(n) ~ c * ((1+sqrt(5))/2)^(n^2/2+n/2) / 5^(n/2), where c = A062073 * (3*A101689-2) = 7.4996979520811499717534... is product of Fibonacci factorial constant (see A062073) and -2+3*sum_{n>=1} 1/product(A000045(k), k=1..n).

A137991 Decimal expansion of the inverse of the number whose Engel expansion has the sequence of Fibonacci numbers (A000045) as coefficients.

Original entry on oeis.org

3, 6, 9, 7, 5, 3, 7, 1, 7, 1, 4, 8, 0, 8, 9, 0, 9, 6, 5, 4, 5, 2, 9, 4, 7, 8, 8, 9, 3, 2, 9, 1, 2, 0, 8, 6, 2, 0, 4, 7, 6, 0, 7, 3, 5, 8, 0, 7, 6, 3, 4, 9, 4, 9, 9, 5, 7, 3, 5, 9, 7, 2, 8, 4, 6, 8, 6, 5, 2, 8, 4, 0, 3, 4, 5, 3, 1, 9, 2, 8, 6, 0, 7, 7, 2, 3, 9, 7, 5, 1, 0, 0, 3, 0, 0, 7, 2, 6, 8
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A000045, A101689 (reciprocal), A137987.

Programs

  • Maple
    with (combinat,fibonacci); P:=proc(n) local a,i,k; a:=0; k:=1; for i from 1 by 1 to n do k:=k*fibonacci(i); a:=a+1/k; print(evalf(1/a,100)); od; end: P(100);
  • Mathematica
    RealDigits[N[1/(Sum[Product[1/Fibonacci[k], {k, 1, n}], {n, 1, 1000}]),
    100]][[1]] (* G. C. Greubel, Dec 26 2016 *)

A238243 A recursive sequence: a(n) = Fibonacci(n)*a(n-1) + 2.

Original entry on oeis.org

1, 3, 8, 26, 132, 1058, 13756, 288878, 9821854, 540201972, 48077975510, 6923228473442, 1613112234311988, 608143312335619478, 370967420524727881582, 366144844057906419121436, 584733315960476551336933294, 1510950888441871408654635631698
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 20 2014

Keywords

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n]==Fibonacci[n]*a[n-1]+2,a[1]==1},a,{n,1,20}]

Formula

a(n) ~ c * ((1+sqrt(5))/2)^(n^2/2+n/2) / 5^(n/2), where c = A062073 * (2*A101689-1) = 5.4087126382942177293... is product of Fibonacci factorial constant (see A062073) and -1+2*sum_{n>=1} 1/product(A000045(k), k=1..n).

A101690 Decimal expansion of the unique real number x whose Engel expansion is the Lucas sequence.

Original entry on oeis.org

1, 4, 2, 9, 7, 1, 5, 9, 2, 2, 6, 8, 9, 2, 0, 4, 2, 0, 0, 2, 7, 7, 2, 3, 0, 6, 9, 2, 6, 2, 7, 1, 6, 5, 5, 3, 7, 4, 9, 6, 9, 4, 6, 7, 9, 9, 5, 8, 4, 5, 8, 1, 6, 6, 3, 6, 4, 2, 9, 7, 7, 4, 7, 1, 0, 4, 3, 4, 6, 5, 8, 2, 4, 7, 4, 3, 5, 8, 9, 0, 0, 1, 7, 2, 0, 7, 8, 9, 1, 8, 1, 9, 1, 3, 3, 1, 6, 6, 4, 0
Offset: 1

Views

Author

Ryan Propper, Dec 11 2004

Keywords

Examples

			x = 1.4297159226892042002772306926271655374969467995845816636429774710...
		

Crossrefs

Programs

  • Mathematica
    Lucas[n_Integer?Positive] := Lucas[n] = Lucas[n-1] + Lucas[n-2]; Lucas[1] = 1; Lucas[2] = 3; N[Sum[1/Product[Lucas[i], {i, n}], {n, 500}], 100]
    digits = 100; Clear[x]; x[m_] := x[m] = N[Sum[1/Product[LucasL[i], {i, 1, n}], {n, 1, m}], digits+5]; m = 10; While[x[m] != x[m-1], m++]; RealDigits[x[m], 10, digits][[1]] (* Jean-François Alcover, Nov 20 2015 *)

Formula

x = Sum_{n >= 1} 1/(Product_{1 <= i <= n} L(i)), where L(i) is the i-th Lucas number.

Extensions

Offset corrected by Amiram Eldar, Nov 09 2020

A130818 Decimal expansion of number whose Engel expansion is the sequence of squares, that is, 1, 4, 9, 16,...

Original entry on oeis.org

1, 2, 7, 9, 5, 8, 5, 3, 0, 2, 3, 3, 6, 0, 6, 7, 2, 6, 7, 4, 3, 7, 2, 0, 4, 4, 4, 0, 8, 1, 1, 5, 3, 3, 3, 5, 3, 2, 8, 5, 8, 4, 1, 1, 0, 2, 7, 8, 5, 4, 5, 9, 0, 5, 4, 0, 7, 0, 8, 3, 9, 7, 5, 1, 6, 6, 4, 3, 0, 5, 3, 4, 3, 2, 3, 2, 6, 7, 6, 3, 4, 2, 7, 2, 9, 5, 1, 7, 0, 8, 8, 5, 5, 6, 4, 8, 5, 8, 9, 8, 9, 8, 4, 5, 9
Offset: 1

Views

Author

Stephen Casey (hexomino(AT)gmail.com), Jul 17 2007

Keywords

Examples

			1.2795853023360672674372044408115333532858411...
		

References

  • F. Engel "Entwicklung der Zahlen nach Stammbruechen" Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg. pp. 190-191, 1913.

Crossrefs

Programs

Formula

Equal to Sum_{n>=1} 1/n!^2 or BesselI(0,2) - 1. - Gerald McGarvey, Nov 12 2007
Equals A070910 - 1. - R. J. Mathar, Jun 13 2008
Showing 1-8 of 8 results.