cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A103200 a(1)=1, a(2)=2, a(3)=11, a(4)=19; a(n) = a(n-4) + sqrt(60*a(n-2)^2 + 60*a(n-2) + 1) for n >= 5.

Original entry on oeis.org

1, 2, 11, 19, 90, 153, 712, 1208, 5609, 9514, 44163, 74907, 347698, 589745, 2737424, 4643056, 21551697, 36554706, 169676155, 287794595, 1335857546, 2265802057, 10517184216, 17838621864, 82801616185, 140443172858, 651895745267, 1105706761003, 5132364345954
Offset: 1

Views

Author

K. S. Bhanu and M. N. Deshpande, Mar 24 2005

Keywords

Comments

The original version of this question was as follows: Let a(1) = 1, a(2) = 2, a(3) = 11, a(4) = 19; for n = 1..4 let b(n) = sqrt(60 a(n)^2 + 60 a(n) + 1); for n >= 5 let a(n) = a(n-4) + b(n-2), b(n) = sqrt(60 a(n)^2 + 60 a(n) +1). Bhanu and Deshpande ask for a proof that a(n) and b(n) are always integers. The b(n) sequence is A103201.
This sequence is also the interleaving of two sequences c and d that can be extended backwards: c(0) = c(1) = 0, c(n) = sqrt(60 c(n-1)^2 + 60 c(n-1) +1) + c(n-2) giving 0,0,1,11,90,712,5609,... d(0) = 1, d(1) = 0, d(n) = sqrt(60 d(n-1)^2 + 60 d(n-1) +1) + d(n-2) giving 1,0,2,19,153,1208,9514,... and interleaved: 0,1,0,0,1,2,11,19,90,153,712,1208,5609,9514,... lim_{n->infinity} a(n)/a(n-2) = 1/(4 - sqrt(15)), (1/(4-sqrt(15)))^n approaches an integer as n -> infinity. - Gerald McGarvey, Mar 29 2005

References

  • K. S. Bhanu (bhanu_105(AT)yahoo.com) and M. N. Deshpande, An interesting sequence of quadruples and related open problems, Institute of Sciences, Nagpur, India, Preprint, 2005.

Crossrefs

Cf. A103201, A177187 (first differences).

Programs

  • Magma
    I:=[1,2,11,19,90]; [n le 5 select I[n] else Self(n-1)+8*Self(n-2)-8*Self(n-3)-Self(n-4)+Self(n-5): n in [1..30]]; // Vincenzo Librandi, Sep 28 2011
  • Maple
    a[1]:=1: a[2]:=2:a[3]:=11: a[4]:=19: for n from 5 to 31 do a[n]:=a[n-4]+sqrt(60*a[n-2]^2+60*a[n-2]+1) od:seq(a[n],n=1..31); # Emeric Deutsch, Apr 13 2005
  • Mathematica
    RecurrenceTable[{a[1]==1,a[2]==2,a[3]==11,a[4]==19,a[n]==a[n-4]+ Sqrt[60a[n-2]^2+60a[n-2]+1]},a[n],{n,40}] (* or *) LinearRecurrence[ {1,8,-8,-1,1},{1,2,11,19,90},40] (* Harvey P. Dale, Sep 27 2011 *)
    CoefficientList[Series[-x*(1 + x + x^2)/((x - 1)*(x^4 - 8*x^2 + 1)), {x, 0, 40}], x] (* T. D. Noe, Jun 04 2012 *)

Formula

Comments from Pierre CAMI and Gerald McGarvey, Apr 20 2005: (Start)
Sequence satisfies a(0)=0, a(1)=1, a(2)=2, a(3)=11; for n > 3, a(n) = 8*a(n-2) - a(n-4) + 3.
G.f.: -x*(1 + x + x^2) / ( (x - 1)*(x^4 - 8*x^2 + 1) ). Note that the 3 = the sum of the coefficients in the numerator of the g.f., 8 appears in the denominator of the g.f. and 8 = 2*3 + 2. Similar relationships hold for other series defined as nonnegative n such that m*n^2 + m*n + 1 is a square, here m=60. Cf. A001652, A001570, A049629, A105038, A105040, A104240, A077288, A105036, A105037. (End)
a(2n) = (A105426(n)-1)/2, a(2n+1) = (A001090(n+2) - 5*A001090(n+1) - 1)/2. - Ralf Stephan, May 18 2007
a(1)=1, a(2)=2, a(3)=11, a(4)=19, a(5)=90, a(n) = a(n-1) + 8*a(n-2) - 8*a(n-3) - a(n-4) + a(n-5). - Harvey P. Dale, Sep 27 2011

Extensions

More terms from Pierre CAMI and Emeric Deutsch, Apr 13 2005

A105038 Nonnegative n such that 6*n^2 + 6*n + 1 is a square.

Original entry on oeis.org

0, 4, 44, 440, 4360, 43164, 427284, 4229680, 41869520, 414465524, 4102785724, 40613391720, 402031131480, 3979697923084, 39394948099364, 389969783070560, 3860302882606240, 38213059042991844, 378270287547312204, 3744489816430130200, 37066627876753989800
Offset: 0

Views

Author

Gerald McGarvey, Apr 03 2005

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[4x/(1-11x+11x^2-x^3),{x,0,30}],x] (* or *) LinearRecurrence[{11,-11,1},{0,4,44},30] (* Harvey P. Dale, Sep 29 2013 *)
  • PARI
    for(n=0,427284,if(issquare(6*n*(n+1)+1),print1(n,",")))
    
  • PARI
    Vec(4*x/(1-11*x+11*x^2-x^3)+O(x^99)) \\ Charles R Greathouse IV, Nov 13 2012

Formula

G.f.: 4*x/(1-11*x+11*x^2-x^3).
a(0)=0, a(1)=4, a(2)=44, a(n)=11*a(n-1)-11*a(n-2)+a(n-3). - Harvey P. Dale, Sep 29 2013
a(n) = (-6-(5-2*sqrt(6))^n*(-3+sqrt(6))+(3+sqrt(6))*(5+2*sqrt(6))^n)/12. - Colin Barker, Mar 05 2016
a(n) = (A072256(n+1) - 1)/2.

Extensions

More terms from Vladeta Jovovic, Apr 05 2005
Incorrect conjectures deleted by N. J. A. Sloane, Nov 24 2010

A222390 Nonnegative integers m such that 10*m*(m+1)+1 is a square.

Original entry on oeis.org

0, 3, 15, 132, 588, 5031, 22347, 191064, 848616, 7255419, 32225079, 275514876, 1223704404, 10462309887, 46468542291, 397292260848, 1764580902672, 15086643602355, 67007605759263, 572895164628660, 2544524437949340, 21754929612286743, 96624921036315675
Offset: 1

Views

Author

Bruno Berselli, Feb 18 2013

Keywords

Comments

a(n+1)/a(n) tends alternately to (7+2*sqrt(10))/3 and (13+4*sqrt(10))/3; a(n+2)/a(n) tends to A176398^2.
Subsequence of A014601.

Crossrefs

Cf. nonnegative integers m such that k*m*(m+1)+1 is a square: A001652 (k=2), A001921 (k=3), A001477 (k=4), A053606 (k=5), A105038 (k=6), A105040 (k=7), A053141 (k=8), this sequence (k=10), A105838 (k=11), A061278 (k=12), A104240 (k=13); A105063 (k=17), A222393 (k=18), A101180 (k=19), A077259 (k=20) [incomplete list].
Cf. A221875.

Programs

  • Magma
    m:=22; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(3*(1+4*x+x^2)/((1-x)*(1-6*x-x^2)*(1+6*x-x^2))));
    
  • Magma
    I:=[0,3,15,132,588]; [n le 5 select I[n] else Self(n-1) +38*Self(n-2)-38*Self(n-3)-Self(n-4)+Self(n-5): n in [1..25]]; // Vincenzo Librandi, Aug 18 2013
    
  • Mathematica
    LinearRecurrence[{1, 38, -38, -1, 1}, {0, 3, 15, 132, 588}, 23]
    CoefficientList[Series[3 x (1 + 4 x + x^2)/((1 - x) (1 - 6 x - x^2) (1 + 6 x - x^2)), {x, 0, 25}], x] (* Vincenzo Librandi, Aug 18 2013 *)
  • Maxima
    makelist(expand(-1/2+((5+(-1)^n*sqrt(10))*(3-sqrt(10))^(2*floor(n/2))+(5-(-1)^n*sqrt(10))*(3+sqrt(10))^(2*floor(n/2)))/20), n, 1, 23);
    
  • PARI
    x='x+O('x^30); concat([0], Vec(3*x*(1+4*x+x^2)/((1-x)*(1-6*x-x^2)*(1+6*x-x^2)))) \\ G. C. Greubel, Jul 15 2018

Formula

G.f.: 3*x*(1+4*x+x^2)/((1-x)*(1-6*x-x^2)*(1+6*x-x^2)).
a(n) = a(-n+1) = a(n-1)+38*a(n-2)-38*a(n-3)-a(n-4)+a(n-5).
a(n) = -1/2+((5+t*(-1)^n)*(3-t)^(2*floor(n/2))+(5-t*(-1)^n)*(3+t)^(2*floor(n/2)))/20, where t=sqrt(10).
2*a(n)+1 = A221875(n).

A253460 Indices of centered heptagonal numbers (A069099) which are also centered square numbers (A001844).

Original entry on oeis.org

1, 16, 112, 3937, 28321, 999856, 7193296, 253959361, 1827068737, 64504677712, 464068265776, 16383934179361, 117871512438241, 4161454776879856, 29938900091047312, 1056993129393303937, 7604362751613578881, 268472093411122320016, 1931478200009757988336
Offset: 1

Views

Author

Colin Barker, Jan 01 2015

Keywords

Comments

Also positive integers y in the solutions to 4*x^2 - 7*y^2 - 4*x + 7*y = 0, the corresponding values of x being A253459.

Examples

			16 is in the sequence because the 16th centered heptagonal number is 841, which is also the 21st centered square number.
		

Crossrefs

Programs

  • PARI
    Vec(-x*(x^4+15*x^3-158*x^2+15*x+1)/((x-1)*(x^2-16*x+1)*(x^2+16*x+1)) + O(x^100))

Formula

a(n) = a(n-1)+254*a(n-2)-254*a(n-3)-a(n-4)+a(n-5).
G.f.: -x*(x^4+15*x^3-158*x^2+15*x+1) / ((x-1)*(x^2-16*x+1)*(x^2+16*x+1)).
a(n) = A105040(n) + 1. - Michel Marcus, Mar 12 2024

A120744 Least k>0 such that a centered polygonal number nk(k+1)/2+1 is a perfect square; or -1 if no such number exists.

Original entry on oeis.org

2, -1, 1, 3, 2, 7, 15, 1, 16, 8, 14, 4, 5, 15, 1, 2, 5, -1, 6, 3, 2, 39, 6, 1, 21, 7, 110, 3, 15, 7, 15, -1, 2, 8, 1, 4, 989, 8, 14, 2, 45, 15, 9, 4, 5, 335, 9, 1, 29, -1, 30, 15, 10, 415, 6, 2, 10, 32, 54, 3, 77, 55, 1, 5, 2, 7, 47750, 11, 15, 23, 47, -1, 48, 24, 16, 12, 5, 8, 2639, 1, 6720, 704, 38, 4, 2, 39, 505, 3, 13, 56, 9, 20, 13, 1631, 41
Offset: 1

Views

Author

Alexander Adamchuk, Apr 26 2007

Keywords

Examples

			a(5) = 2 because A129556(2) = 2>1 and A129556(1) = 0<1.
		

Crossrefs

Formula

a(n) = -1 for n in A166259.
a(n) = 1 for n = k^2-1.

Extensions

Edited and b-file provided by Max Alekseyev, Jan 20 2010

A166259 Positive integers n such that a centered polygonal number n*k*(k+1)/2+1 is not a square for any k > 0.

Original entry on oeis.org

2, 18, 32, 50, 72, 98, 128, 162, 200, 242, 338, 392, 450, 512, 578, 648, 722, 882, 968, 1058, 1152, 1250, 1352, 1458, 1682, 1800, 1922, 2048, 2178, 2312, 2401, 2450, 2662, 2738, 2809, 2888, 3042, 3174, 3200, 3362, 3528, 3698, 3750, 4050, 4225, 4232, 4418, 4489, 4608, 4802
Offset: 1

Views

Author

Alexander Adamchuk, Oct 10 2009

Keywords

Comments

Positive integers n such that A120744(n) = -1.

Crossrefs

Extensions

Edited and extended by Max Alekseyev, Jan 20 2010

A222393 Nonnegative integers m such that 18*m*(m+1)+1 is a square.

Original entry on oeis.org

0, 4, 12, 152, 424, 5180, 14420, 175984, 489872, 5978292, 16641244, 203085960, 565312440, 6898944364, 19203981732, 234361022432, 652370066464, 7961375818340, 22161378278060, 270452416801144, 752834491387592, 9187420795420572, 25574211328900084
Offset: 1

Views

Author

Bruno Berselli, Feb 19 2013

Keywords

Comments

a(n+2)/a(n) tends to A156164.
a(n) is congruent to {0,2,4} (mod 5, 6 and 10).

Crossrefs

Cf. nonnegative integers n such that k*n*(n+1)+1 is a square: A001652 (k=2), A001921 (k=3), A001477 (k=4), A053606 (k=5), A105038 (k=6), A105040 (k=7), A053141 (k=8), A222390 (k=10), A105838 (k=11), A061278 (k=12), A104240 (k=13); A105063 (k=17), this sequence (k=18), A101180 (k=19), A077259 (k=20) [incomplete list].

Programs

  • Magma
    m:=22; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(4*(1+x)^2/((1-x)*(1-6*x+x^2)*(1+6*x+x^2))));
    
  • Magma
    I:=[0,4,12,152,424]; [n le 5 select I[n] else Self(n-1)+34*Self(n-2)-34*Self(n-3)-Self(n-4)+Self(n-5): n in [1..25]]; // Vincenzo Librandi, Aug 18 2013
    
  • Mathematica
    LinearRecurrence[{1, 34, -34, -1, 1}, {0, 4, 12, 152, 424}, 23]
    CoefficientList[Series[4 x (1 + x)^2 / ((1 - x) (1 - 6 x + x^2) (1 + 6 x + x^2)), {x, 0, 25}], x] (* Vincenzo Librandi, Aug 18 2013 *)
  • Maxima
    makelist(expand(-1/2+((3+sqrt(2)*(-1)^n)*(3-2*sqrt(2))^(2*floor(n/2))+(3-sqrt(2)*(-1)^n)*(3+2*sqrt(2))^(2*floor(n/2)))/12), n, 1, 23);
    
  • PARI
    x='x+O('x^30); concat([0], Vec(4*x*(1+x)^2/((1-x)*(1-6*x+x^2)*(1+6*x+x^2)))) \\ G. C. Greubel, Jul 15 2018

Formula

G.f.: 4*x*(1+x)^2/((1-x)*(1-6*x+x^2)*(1+6*x+x^2)).
a(n) = a(-n+1) = a(n-1)+34*a(n-2)-34*a(n-3)-a(n-4)+a(n-5).
a(n) = -1/2+((3+t*(-1)^n)*(3-2*t)^(2*floor(n/2))+(3-t*(-1)^n)*(3+2*t)^(2*floor(n/2)))/12, where t=sqrt(2).

A105051 Define a(1)=0, a(2)=0, a(3)=15, a(4)=111 then a(n) = 254*a(n-2) - a(n-4) + 126 also sequence such that 7*a(n)*(a(n) + 1) + 1 = a square.

Original entry on oeis.org

0, 0, 15, 111, 3936, 28320, 999855, 7193295, 253959360, 1827068736, 64504677711, 464068265775, 16383934179360, 117871512438240, 4161454776879855, 29938900091047311, 1056993129393303936, 7604362751613578880
Offset: 1

Views

Author

Pierre CAMI, Apr 04 2005

Keywords

Comments

This sequence is such that 7*a(n)*(a(n) + 1) + 1 = j^2 = a square integer positive root of a(n)^2 + a(n) - (j^2-1)/7 = 0 is such that 2*a(n) + 1 = sqrt((4*j^2+3)/7), ((4*j^2+3)/7) need to be a square so j^2 = (7*k^2-3)/4, put k=2*a(n)+1 you found that (7*k^2-3)/4 = 7*a(n)^2 + 7*a(n) + 1

Crossrefs

Cf. A105040.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); [0,0] cat Coefficients(R!( 3*x^2*(5+32*x+5*x^2)/((1-x)*(1-254*x^2+x^4)) )); // G. C. Greubel, Mar 13 2023
    
  • Mathematica
    LinearRecurrence[{1,254,-254,-1,1}, {0,0,15,111,3936}, 30] (* G. C. Greubel, Mar 13 2023 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A105051
        if (n<6): return (0,0,0,15,111,3936)[n]
        else: return a(n-1) +254*a(n-2) -254*a(n-3) -a(n-4) +a(n-5)
    [a(n) for n in range(41)] # G. C. Greubel, Mar 13 2023

Formula

From R. J. Mathar, Aug 28 2008: (Start)
a(n) = A105040(n-2).
G.f.: 3*x^2*(5+32*x+5*x^2)/((1-x)*(1+16*x+x^2)*(1-16*x+x^2)). (End)

Extensions

Extended by R. J. Mathar, Aug 28 2008

A145856 Least number k>1 such that centered n-gonal number n*k(k-1)/2+1 is a perfect square, or 0 if no such k exists.

Original entry on oeis.org

3, 0, 2, 4, 3, 8, 16, 2, 17, 9, 15, 5, 6, 16, 2, 3, 6, 0, 7, 4, 3, 40, 7, 2, 22, 8, 111, 4, 16, 8, 16, 0, 3, 9, 2, 5, 990, 9, 15, 3, 46, 16, 10, 5, 6, 336, 10, 2, 30, 0, 31, 16, 11, 416, 7, 3, 11, 33, 55, 4, 78, 56, 2, 6, 3, 8, 47751, 12, 16, 24, 48, 0, 49, 25, 17, 13, 6, 9, 2640, 2, 6721
Offset: 1

Views

Author

Alexander Adamchuk, Oct 22 2008

Keywords

References

  • Jonathan Vos Post, When Centered Polygonal Numbers are Perfect Squares, submitted to Mathematics Magazine, 4 May 2004, manuscript no. 04-1165, unpublished, available upon request. - Jonathan Vos Post, Oct 25 2008

Crossrefs

Formula

a(n) = 0 for n in A166259.
a(n) = A120744(n) + 1. - Alexander Adamchuk, Oct 10 2009

Extensions

Edited by Max Alekseyev, Jan 23 2010
Showing 1-9 of 9 results.