cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A173112 Partial sums of A106116.

Original entry on oeis.org

2, 5, 10, 17, 40, 69, 106, 149, 196, 249, 308, 375, 448, 527, 610, 699, 796, 1019, 1246, 1475, 1708, 1947, 2204, 2467, 2736, 3013, 3296, 3589, 3926, 4273, 4622, 4975, 5334, 5701, 6074, 6453, 6836, 7225, 7622, 8055, 8494, 8937, 9386, 9843, 10306
Offset: 1

Views

Author

Jonathan Vos Post, Feb 10 2010

Keywords

Crossrefs

Cf. A106116.

Formula

a(n) = Sum_{i=1..n} A106116(i).

Extensions

a(10), a(13), a(18) etc. corrected by Georg Fischer, Aug 29 2020

A038603 Primes not containing the digit '1'.

Original entry on oeis.org

2, 3, 5, 7, 23, 29, 37, 43, 47, 53, 59, 67, 73, 79, 83, 89, 97, 223, 227, 229, 233, 239, 257, 263, 269, 277, 283, 293, 307, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 409, 433, 439, 443, 449, 457, 463, 467, 479, 487, 499, 503, 509, 523, 547, 557
Offset: 1

Views

Author

Vasiliy Danilov (danilovv(AT)usa.net), Jul 15 1998

Keywords

Comments

Subsequence of A132080. - Reinhard Zumkeller, Aug 09 2007
Maynard proves that this sequence is infinite and in particular contains the expected number of elements up to x, on the order of x^(log 9/log 10)/log x. - Charles R Greathouse IV, Apr 08 2016

Crossrefs

Intersection of A000040 (primes) and A052383 (numbers with no digit 1).
Primes having no digit d = 0..9 are A038618, this sequence, A038604, A038611, A038612, A038613, A038614, A038615, A038616, and A038617, respectively.
Primes with other restrictions on digits: A106116, A156756.

Programs

  • Magma
    [ p: p in PrimesUpTo(600) | not 1 in Intseq(p) ];  // Bruno Berselli, Aug 08 2011
    
  • Mathematica
    Select[Prime[Range[70]], DigitCount[#, 10, 1] == 0 &] (* Vincenzo Librandi, Aug 09 2011 *)
  • PARI
    is(n)=if(isprime(n),n=vecsort(eval(Vec(Str(n))),,8);n[1]>1||(!n[1]&&n[2]>1)) \\ Charles R Greathouse IV, Aug 09 2011
    
  • PARI
    is(n)=!vecsearch(vecsort(digits(n)),1) && isprime(n) \\ Charles R Greathouse IV, Oct 03 2012
    
  • PARI
    next_A038603(n)=until((n=nextprime(n+1))==n=next_A052383(n-1),);n \\ Compute least a(k) > n. See A052383. - M. F. Hasler, Jan 14 2020
    
  • Python
    from sympy import nextprime
    i=p=1
    while i<=500:
        p = nextprime(p)
        if '1' not in str(p):
            print(str(i)+" "+str(p))
            i+=1
    # Indranil Ghosh, Feb 07 2017, edited by M. F. Hasler, Jan 15 2020
    # See the OEIS Wiki page for more efficient programs. - M. F. Hasler, Jan 14 2020

Formula

a(n) ≍ n^(log 10/log 9) log n. - Charles R Greathouse IV, Aug 03 2023

A038617 Primes not containing the digit '9'.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 23, 31, 37, 41, 43, 47, 53, 61, 67, 71, 73, 83, 101, 103, 107, 113, 127, 131, 137, 151, 157, 163, 167, 173, 181, 211, 223, 227, 233, 241, 251, 257, 263, 271, 277, 281, 283, 307, 311, 313, 317, 331, 337, 347, 353, 367, 373, 383, 401, 421
Offset: 1

Views

Author

Vasiliy Danilov (danilovv(AT)usa.net), Jul 15 1998

Keywords

Comments

Subsequence of primes of A007095. - Michel Marcus, Feb 22 2015
Maynard proves that this sequence is infinite and in particular contains the expected number of elements up to x, on the order of x^(log 9/log 10)/log x. - Charles R Greathouse IV, Apr 08 2016

Crossrefs

Intersection of A000040 (primes) and A007095 (numbers with no digit 9).
Primes having no digit d = 0..9 are A038618, A038603, A038604, A038611, A038612, A038613, A038614, A038615, A038616, and this sequence, respectively.
Primes with other restrictions on digits: A106116, A156756.

Programs

  • Magma
    [ p: p in PrimesUpTo(500) | not 9 in Intseq(p) ]; // Bruno Berselli, Aug 08 2011
    
  • Mathematica
    Select[Prime[Range[1000]], DigitCount[ # ][[9]] == 0 &] (* Stefan Steinerberger, May 20 2006 *)
  • PARI
    lista(nn)=forprime(p=2, nn, if (!vecsearch(vecsort(digits(p),,8), 9), print1(p, ", "));); \\ Michel Marcus, Feb 22 2015
    
  • PARI
    lista(nn) = forprime (p=2, nn, if (vecmax(digits(p)) != 9, print1(p, ", "))); \\ Michel Marcus, Apr 06 2016
    
  • PARI
    next_A038617(n)=until((n=nextprime(n+1))==(n=next_A007095(n-1)), ); n \\ M. F. Hasler, Jan 14 2020
    
  • Python
    from sympy import isprime
    i = 1
    while i <= 300:
        if "9" not in str(i) and isprime(i):
            print(str(i), end=",")
        i += 1 # Indranil Ghosh, Feb 07 2017

Formula

a(n) ~ n^(log 10/log 9) * log(n). - Charles R Greathouse IV, Aug 03 2023

A160402 Primes made up of all distinct digits except 0 and 1.

Original entry on oeis.org

23456789, 23458679, 23459687, 23465789, 23465987, 23469587, 23475869, 23478569, 23489657, 23495867, 23496587, 23498567, 23546879, 23546987, 23548697, 23564897, 23564987, 23567849, 23569487, 23576489, 23584679, 23587649, 23589647, 23594687
Offset: 1

Views

Author

Lekraj Beedassy, May 13 2009

Keywords

Comments

More precisely, "primes made up of all distinct digits from 2 to 9, each occurring once." Since this restricts the number of digits to 8, the sequence is finite.
The last term of this sequence is a(3098) = 98745623. - Nathaniel Johnston, Jun 24 2011
Also numbers n such that the list of divisors of n contains all the digits 1-9 and each digit appears exactly once (in base 10). There are no composite numbers with this property. Numbers n such that A243360(n) = 987654321. - Jaroslav Krizek, Jun 19 2014

Crossrefs

Cf. A029743, A106116. Subsequence of A074665.

Programs

  • Magma
    [n: n in [1..100000000] | Seqint(Sort(&cat[(Intseq(k)): k in Divisors(n)])) eq 987654321] // Jaroslav Krizek, Jun 19 2014
  • Maple
    A160402:={}: p:=23456789: while p<=98765432 do d:=convert(p,base,10): ddig:=true: for k from 0 to 9 do if((k<=1 and numboccur(k,d)>0) or (k>=2 and numboccur(k,d)<>1))then ddig:=false:break: fi: od: if(ddig)then A160402:=A160402 union {p}: fi: p:=nextprime(p): od: op(sort(convert(A160402,list))); # Nathaniel Johnston, Jun 24 2011

Extensions

Keywords "base,fini" added by R. J. Mathar, May 14 2009

A361822 Primes without {2, 5} as digits.

Original entry on oeis.org

3, 7, 11, 13, 17, 19, 31, 37, 41, 43, 47, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 131, 137, 139, 149, 163, 167, 173, 179, 181, 191, 193, 197, 199, 307, 311, 313, 317, 331, 337, 347, 349, 367, 373, 379, 383, 389, 397, 401, 409, 419, 431, 433, 439, 443, 449, 461, 463
Offset: 1

Views

Author

Bernard Schott, Mar 26 2023

Keywords

Comments

Subsequence of primes that are in A361780.

Crossrefs

Intersection of A000040 and A361780.
Cf. A079651 (primes with {1, 4, 7}), A079652 (primes with {0, 3, 6, 8, 9}).
Cf. A247052 (primes with {1, 2, 4, 5, 7}), A034470 (primes with {0, 2, 3, 5, 6, 8, 9}).
Cf. A106116, A154761, A386320 - A386358 (primes without two decimal digits).
Cf. A385776.

Programs

  • Maple
    filter:= proc(n) convert(convert(n,base,10),set) intersect {2,5} = {} end proc:
    select(filter, [seq(ithprime(i),i=1..1000)]); # Robert Israel, Mar 26 2023
  • Mathematica
    Select[Prime[Range[100]], AllTrue[IntegerDigits[#], ! MemberQ[{2, 5}, #1] &] &] (* Amiram Eldar, Mar 26 2023 *)
  • Python
    print(list(islice(primes_with("01346789"), 41))) # uses function/imports in A385776. Jason Bard, Jul 20 2025

A296187 Yarborough primes that remain Yarborough primes when each of their digits are replaced by their squares.

Original entry on oeis.org

73, 223, 233, 283, 337, 383, 523, 733, 773, 823, 2333, 2683, 2833, 2857, 3323, 3583, 3673, 3733, 3853, 5333, 6673, 6737, 6883, 7333, 7673, 7727, 7877, 8233, 8563, 8623, 22277, 22283, 22727, 23333, 23833, 25237, 25253, 25633, 26227, 26833, 27583, 27827, 27883, 32257
Offset: 1

Views

Author

K. D. Bajpai, Feb 14 2018

Keywords

Comments

A Yarborough prime is a prime that does not contain digits 0 or 1.
Terms t of A106116 such that A048385(t) is also a term of A106116. - Felix Fröhlich, Feb 14 2018

Examples

			a(1) = 73 is a prime, and replacing each of its digits by its square yields 499, which is also prime. Neither 73 nor 499 contains digits 0 or 1, so both are Yarborough primes.
a(10) = 823 is a prime, and replacing each of its digits by its square gives 6449, another prime. Neither 823 nor 6449 contains digits 0 or 1, so both are Yarborough primes.
		

Crossrefs

Cf. A106116 (Yarborough primes), A048385, A052034, A296563 (digits to cubes).

Programs

  • Mathematica
    k = 2; Select[Prime[Range[1000000]], Min[IntegerDigits[#]] > 1 &&  Min[IntegerDigits[Flatten[IntegerDigits[(IntegerDigits[#]^k)]]]] > 1 && PrimeQ[FromDigits[Flatten[IntegerDigits[(IntegerDigits[#]^k)]]]] &]
  • PARI
    eva(n) = subst(Pol(n), x, 10)
    is_a106116(n) = ispseudoprime(n) && vecmin(digits(n)) > 1
    a048385(n) = my(d=digits(n), e=[]); for(k=1, #d, d[k]=d[k]^2); for(k=1, #d, my(dd=digits(d[k])); for(t=1, #dd, e=concat(e, dd[t]))); eva(e)
    is(n) = is_a106116(n) && is_a106116(a048385(n)) \\ Felix Fröhlich, Mar 26 2018

Formula

{A106116(k): A048385(A106116(k)) in A106116}. - Felix Fröhlich, Feb 14 2018

A296563 Yarborough primes that remain Yarborough primes when each of their digits are replaced by their cubes.

Original entry on oeis.org

23, 43, 73, 229, 233, 277, 449, 773, 937, 947, 2239, 2243, 2297, 2377, 2777, 3299, 3449, 3727, 3943, 4243, 4423, 4493, 7393, 7723, 7927, 7949, 9227, 9743, 9749, 22277, 22727, 22777, 22943, 23327, 23399, 23497, 23747, 24473, 24733, 27239, 27277, 27427, 27799, 29347
Offset: 1

Views

Author

K. D. Bajpai, Feb 15 2018

Keywords

Comments

A Yarborough prime is a prime that does not contain digits 0 or 1.

Examples

			a(1) = 23 is a prime, and replacing each of its digits by its cube yields 827, which is also prime. Neither 23 nor 827 contains digits 0 or 1, so both are Yarborough primes.
a(4) = 229 is a prime, and replacing each of its digits by its cube gives 88729, which is also prime. Neither 229 nor 88729 contains digits 0 or 1, so both are Yarborough primes.
29 is a Yarborough prime but 8729 = 7 * 29 * 43, so 29 is not in the sequence.
53 is a Yarborough prime; 12527 is also a prime but not a Yarborough prime (contains digit 1). Hence, 53 is not included in this sequence.
		

Crossrefs

Cf. A106116 (Yarborough primes), A296187 (digits to squares), A048390, A277047.

Programs

  • Mathematica
    k = 3; Select[Prime[Range[10000]], Min[IntegerDigits[#]] > 1 && Min[IntegerDigits[Flatten[IntegerDigits[(IntegerDigits[#]^k)]]]] > 1 && PrimeQ[FromDigits[Flatten[IntegerDigits[(IntegerDigits[#]^k)]]]] &]

Formula

{A106116(k): A048390(A106116(k)) in A106116} . - R. J. Mathar, May 04 2018
Showing 1-7 of 7 results.