A005252 a(n) = Sum_{k=0..floor(n/4)} binomial(n-2k,2k).
1, 1, 1, 1, 2, 4, 7, 11, 17, 27, 44, 72, 117, 189, 305, 493, 798, 1292, 2091, 3383, 5473, 8855, 14328, 23184, 37513, 60697, 98209, 158905, 257114, 416020, 673135, 1089155, 1762289, 2851443, 4613732, 7465176, 12078909, 19544085, 31622993
Offset: 0
References
- John H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, p. 205 of first edition.
- R. K. Guy, Anyone for Twopins?, in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15.
- David J. C. MacKay, Information Theory, Inference and Learning Algorithms, CUP, 2003, p. 251.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Ian Stewart, Galois theory, CRC Press, Boca Raton, FL, 2015, p. 32.
- E. L. Tan, On the cycle graph of a graph and inverse cycle graphs, Ph.D. Dissertation, Univ. of Philippines, Diliman, Quezon City, 1987.
- E. L. Tan, On Fibonacci numbers and cycle graphs, Matimyas Matemaka (Published by the Mathematical Society of the Philippines), 13 (No. 2, 1990), 1-4.
Links
- T. D. Noe, Table of n, a(n) for n = 0..500
- R. Austin and R. K. Guy, Binary sequences without isolated ones, Fib. Quart., 16 (1978), 84-86.
- R. K. Guy, Anyone for Twopins?, in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15. [Annotated scanned copy, with permission]
- V. C. Harris and C. C. Styles, A generalization of Fibonacci numbers, Fib. Quart. 2 (1964) 277-289, sequence u(n,2,2).
- V. E. Hoggatt, Jr., 7-page typed letter to N. J. A. Sloane with suggestions for new sequences, circa 1977.
- V. E. Hoggatt, Jr. and M. Bicknell, Diagonal sums of generalized Pascal triangles, Fib. Quart., 7 (1969), 341-358, 393.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 424
- Milan Janjic, Binomial Coefficients and Enumeration of Restricted Words, Journal of Integer Sequences, 2016, Vol 19, #16.7.3
- S. Klavzar, Structure of Fibonacci cubes: a survey, J. Comb. Optim. 25 (2013), 505-522, DOI:10.1007/s10878-011-9433-z.
- E. Munarini and N. Z. Salvi, Structural and enumerative properties of the Fibonacci cubes, Discrete Math., 255, 2002, 317-324.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- E. L. Tan, Letter to N. J. A. Sloane, Feb 1992
- OEIS Wiki, Autosequence.
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,1).
Crossrefs
Programs
-
Haskell
a005252 n = sum $ map (\x -> a007318 (n - x) x) [0, 2 .. 2 * div n 4] -- Reinhard Zumkeller, Jul 05 2013
-
Magma
I:=[1,1,1,1]; [n le 4 select I[n] else 2*Self(n-1)-Self(n-2)+Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jan 09 2016
-
Maple
ZL:=[S, {a = Atom, b = Atom, S = Prod(X,Sequence(Prod(X,X))), X = Sequence(b,card >= 2)}, unlabelled]: seq(combstruct[count](ZL, size=n), n=2..40); # Zerinvary Lajos, Mar 26 2008
-
Mathematica
Table[Sum[Binomial[n-2k,2k],{k,0,Floor[n/4]}],{n,0,50}] (* or *) LinearRecurrence[{2,-1,0,1},{1,1,1,1},50] (* Harvey P. Dale, Dec 09 2011 *) Table[HypergeometricPFQ[{1/4-n/4, 1/2-n/4, 3/4-n/4, -n/4}, {1/2, 1/2-n/2, -n/2}, 16], {n, 0, 38}] (* Jean-François Alcover, Oct 04 2012 *)
-
PARI
Vec((1-x)/((1-x-x^2)*(1-x+x^2)) + O(x^100)) \\ Altug Alkan, Jan 08 2015
-
PARI
a(n) = fibonacci(n+1)>>1 + (n%6<2); \\ Kevin Ryde, Apr 29 2021
Formula
Second differences give sequence shifted twice. - E. L. Tan, Univ. Phillipines.
G.f.: (1-x)/((1-x-x^2)*(1-x+x^2)). Simon Plouffe in his 1992 dissertation.
From Paul Barry, Mar 15 2004: (Start)
a(n) = Fibonacci(n+1)/2 + A010892(n)/2;
a(n) = (((1+sqrt(5))/2)^(n+1)/sqrt(5) - ((1-sqrt(5))/2)^(n+1)/sqrt(5) + cos(Pi*n/3) + sin(Pi*n/3)/sqrt(3))/2. (End)
a(n) = 2*a(n-1) - a(n-2) + a(n-4); a(0) = a(1) = a(2) = a(3) = 1. - Philippe Deléham, May 01 2006
a(n) = A173021(2^(n-1) - 1) for n > 0. - Reinhard Zumkeller, Feb 07 2010
Limit_{n->oo} a(n)/a(n+1) = (sqrt(5) - 1)/2. - Sergei N. Gladkovskii, Jan 05 2014
G.f.: (1 + Q(0)*x^4/2)/(1-x), where Q(k) = 1 + 1/(1 - x*( 4*k + 2 - x + x^3)/( x*( 4*k + 4 - x + x^3) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 07 2014
a(n) = Fibonacci(n+1) + (-1)^(n+1)*A106511(n+2). - Katharine Ahrens, May 05 2019
E.g.f.: exp(x/2)*(15*(cos(sqrt(3)*x/2) + cosh(sqrt(5)*x/2)) + 5*sqrt(3)*sin(sqrt(3)*x/2) + 3*sqrt(5)*sinh(sqrt(5)*x/2))/30. - Stefano Spezia, Aug 03 2022
Extensions
More terms from (and formula corrected by) James Sellers, Feb 06 2000
Definition revised at the suggestion of Alessandro Orlandi by N. J. A. Sloane, Aug 16 2009
Comments