cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A327263 Array T(n,k) in which the i-th row consists of numbers > 1 not in array U(i;n,k) = (i*n*k - (i-2)*A319929(n,k))/2 where i >= 1, n >= 1 and k >= 1, read by antidiagonals.

Original entry on oeis.org

3, 5, 2, 9, 3, 2, 13, 5, 3, 2, 21, 7, 4, 3, 2, 25, 11, 5, 4, 3, 2, 33, 13, 7, 5, 4, 3, 2, 37, 17, 9, 6, 5, 4, 3, 2, 45, 19, 10, 7, 6, 5, 4, 3, 2, 57, 23, 13, 9, 7, 6, 5, 4, 3, 2, 61, 29, 15, 11, 8, 7, 6, 5, 4, 3, 2, 73, 31, 17, 12, 9, 8, 7, 6, 5, 4, 3, 2
Offset: 1

Views

Author

David Lovler, Oct 15 2019

Keywords

Comments

All the U(i;n,k) mimic the ordinary multiplication table in that they are commutative, associative, have identity element 1 and have 0. However (except when i=2) they are partially distributive, meaning that distributivity works except if an even number is partitioned into a sum of two odd numbers. Only when i=2, the odd-even-dependent A319929 term disappears and normal distributivity holds.
U(0;n,k) = A319929(n,k);
U(1;n,k) = A322630(n,k);
U(2;n,k) = n*k;
U(3;n,k) = A322744(n,k);
U(4;n,k) = A327259(n,k);
U(i;n,k) = 2i*floor(n/2)*floor(k/2) + A319929(n,k).
Row 1 is 2p-1 where p is a prime number (A076274 without 1).
Row 2 is the prime numbers.
Row 3 is A307002.
Row 4 is A327261.
The i-th row of T(n,k) consists of numbers that sieve out of the array U(i;n,k) = (i*n*k - (i-2)*A319929(n,k))/2, in numerical order.
From David Lovler, Sep 02 2020: (Start)
Row 1 has no even numbers. Row 2 has one even number. Generally, the even numbers of the i-th row start with i-1 consecutive even numbers (from 2). This is because U(i;2,2) = 2*i gives the first even number not in row i.
Row 3 seems to have even numbers that, after 2, coincide with A112774 which has an infinite number of terms. For i > 3, as i increases, row i has a denser presence of even numbers, thus each row has an infinite number of even terms.
Generalization of the twin prime conjecture: Since row 2 is the prime numbers, we can observe the twin prime conjecture that after the first three odd primes, the sprinkling of pairs of consecutive prime numbers never ends. Concerning just odd terms, a similar conjecture can be stated for rows i >= 3. Row 3 starts with four odd numbers then the sprinkling of three consecutive odd number never ends. Row 4 starts with five odd numbers then the sprinkling of four consecutive odd numbers never ends. The pattern continues as row i starts with i+1 odd numbers then the sprinkling of i consecutive odd numbers never ends. We can take this back to row 1 which starts with two odd numbers then continues with isolated odd numbers.
Studying the even terms, there is an analog to the above generalization of the twin prime conjecture. Row 3 starts with two even numbers then continues with isolated even numbers. Row 4 starts with three even numbers then the sprinkling of pairs of consecutive even numbers never ends. Row 5 starts with four even numbers then the sprinkling of three consecutive even numbers never ends. The pattern continues as row i starts with i-1 even numbers then the sprinkling of i-2 consecutive even numbers never ends.
(End)

Examples

			3  5  9  13  21  25  33  37  45  57  61  73  81  85  93 105 117 121 133 141 145 ...
2  3  5   7  11  13  17  19  23  29  31  37  41  43  47  53  59  61  67  71  73 ...
2  3  4   5   7   9  10  13  15  17  21  22  23  25  29  31  34  37  39  41  45 ...
2  3  4   5   6   7   9  11  12  14  15  17  19  21  22  25  27  28  29  31  35 ...
2  3  4   5   6   7   8   9  11  13  14  16  17  18  19  21  23  25  26  28  29 ...
2  3  4   5   6   7   8   9  10  11  13  15  16  18  19  20  21  22  23  25  27 ...
2  3  4   5   6   7   8   9  10  11  12  13  15  17  18  20  21  22  23  24  25 ...
2  3  4   5   6   7   8   9  10  11  12  13  14  15  17  19  20  22  23  24  25 ...
2  3  4   5   6   7   8   9  10  11  12  13  14  15  16  17  19  21  22  24  25 ...
2  3  4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  21  23  24 ...
...
		

Crossrefs

Programs

  • Mathematica
    row=12;max=200;U[i_,n_,k_]:=(i*n*k-(i-2)If[OddQ@n,If[OddQ@k,n+k-1,k],If[OddQ@k,n,0]])/2;t=Table[c=Union@Flatten@Table[U[i,n,k],{n,2,max},{k,2,max}];Complement[Range[2,max],c][[;;row]],{i,row}];Flatten@Table[t[[m,k-m+1]],{k,row},{m,k}] (* Giorgos Kalogeropoulos, Jun 08 2021 *)

Formula

With one exception there are likely no formulas for the rows of T(n,k) since their creation is based on a sieving process like the familiar prime number sieve. The exception is T(1,k) = 2*T(2,k)-1.

A307002 Numbers > 1 not of the form (3n*k - A319929(n,k))/2 where n and k > 1.

Original entry on oeis.org

2, 3, 4, 5, 7, 9, 10, 13, 15, 17, 21, 22, 23, 25, 29, 31, 34, 37, 39, 41, 45, 46, 49, 53, 55, 57, 58, 63, 65, 69, 71, 73, 77, 79, 81, 82, 85, 93, 94, 95, 97, 101, 105, 106, 109, 111, 118, 119, 121, 125, 129, 133, 135, 137, 141, 142, 143, 149, 151, 153, 157
Offset: 1

Views

Author

David Lovler, Mar 19 2019

Keywords

Comments

All even terms > 2 appear to be semiprimes of the form 6m+4 (A112774).
The subsequence of odd terms is A307001. - David Lovler, Jan 17 2022

Crossrefs

Third row of array A327263.

Programs

  • PARI
    T319929(n, k) = if (n%2, if (k%2, n+k-1, k), if (k%2, n, 0));
    T(n, k) = (3*n*k - T319929(n, k))/2; \\ A322744
    lista(nn) = {my(list = List()); for (n=2, nn, for (k=2, nn\n, listput(list, T(n, k)););); setminus([2..nn], Set(list));} \\ Michel Marcus, Jan 24 2021

Extensions

Name amended by David Lovler, Jan 25 2022

A112772 Semiprimes of the form 6n+2.

Original entry on oeis.org

14, 26, 38, 62, 74, 86, 122, 134, 146, 158, 194, 206, 218, 254, 278, 302, 314, 326, 362, 386, 398, 422, 446, 458, 482, 542, 554, 566, 614, 626, 662, 674, 698, 734, 746, 758, 794, 818, 842, 866, 878, 914, 926, 974, 998, 1046, 1082, 1094, 1142, 1154, 1202, 1214
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Oct 15 2005

Keywords

Comments

Rado showed that for a given Bernoulli number B_n there exist infinitely many Bernoulli numbers B_m having the same denominator. As a special case, if n = 2p where p is an odd prime p == 1 (mod 3), then the denominator of the Bernoulli number B_n equals 6. - Bernd C. Kellner, Mar 21 2018

Crossrefs

Subsequence of A051222. - Bernd C. Kellner, Mar 21 2018
Cf. A027642.

Programs

  • Magma
    IsSemiprime:= func; [s: n in [0..210] | IsSemiprime(s) where s is 6*n + 2]; // Vincenzo Librandi, Sep 22 2012
    
  • Mathematica
    Select[6Range[0,300]+2,PrimeOmega[#]==2&] (* Harvey P. Dale, Oct 04 2011 *)
  • PARI
    2*select(n->n%3==1,primes(100)) \\ Charles R Greathouse IV, Sep 22 2012

Formula

a(n) = 2 * A002476(n) = 6 * A024892(n) + 2.
denominator(Bernoulli(a(n))) = 6. - Bernd C. Kellner, Mar 21 2018

A319996 Let g = A006530(n), the largest prime factor of n. This filter sequence combines (g mod 6), n/g (A052126), and a single bit A319988(n) telling whether the largest prime factor is unitary.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 5, 11, 7, 12, 13, 14, 5, 15, 7, 16, 17, 10, 5, 18, 19, 12, 20, 21, 5, 22, 7, 23, 13, 10, 24, 25, 7, 12, 17, 26, 5, 27, 7, 16, 28, 10, 5, 29, 30, 31, 13, 21, 5, 32, 33, 34, 17, 10, 5, 35, 7, 12, 36, 37, 24, 22, 7, 16, 13, 38, 5, 39, 7, 12, 40, 21, 41, 27, 7, 42, 43, 10, 5, 44, 33, 12, 13, 26, 5, 45, 46, 16, 17, 10, 24, 47, 7, 48, 28, 49, 5, 22, 7, 34
Offset: 1

Views

Author

Antti Karttunen, Oct 05 2018

Keywords

Comments

Restricted growth sequence transform of triple [A010875(A006530(n)), A052126(n), A319988(n)], with a separate value allotted for a(1).
Many of the same comments as given in A319717 apply also here, except for this filter, the "blind spot" area (where only unique values are possible for a(n)) is different, and contains at least all numbers in A070003. Because presence of 2 or 3 in the prime factorization of n do not force the value of a(n) unique, this is substantially less lax (i.e., more exact) filter than A319717. Here among the first 100000 terms, only 2393 have a unique value, compared to 74355 in A319717.
For all i, j:
a(i) = a(j) => A002324(i) = A002324(j),
a(i) = a(j) => A067029(i) = A067029(j),
a(i) = a(j) => A071178(i) = A071178(j),
a(i) = a(j) => A077462(i) = A077462(j) => A101296(i) = A101296(j),
a(i) = a(j) => A319690(i) = A319690(j).

Examples

			For n = 15 (3*5) and n = 33 (3*11), the mod 6 residue of the largest prime factor is 5, also in both cases it is unitary (A319988(n) = 1), and the quotient n/A006530(n) is equal, in this case 3. Thus a(15) and a(33) are alloted the same running count (13 in this case) by rgs-transform.
For n = 2275 (5^2 * 7 * 13), n = 3325 (5^2 * 7 * 19), 5425 (5^2 * 7 * 31) and 6475 (5^2 * 7 * 37), the largest prime factor = 1 (mod 6), and A052126(n) = 175, thus these numbers are allotted the same running count (394 in this case) by rgs-transform.
		

Crossrefs

Cf. A007528 (positions of 5's), A002476 (of 7's), A112774 (after its initial term gives the position of 10's in this sequence).
Cf. also A319994 (modulo 4 analog).

Programs

  • PARI
    up_to = 100000;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A006530(n) = if(n>1, vecmax(factor(n)[, 1]), 1);
    A052126(n) = (n/A006530(n));
    A319988(n) = ((n>1)&&(factor(n)[omega(n),2]>1));
    A319996aux(n) = if(1==n,0,[A006530(n)%6, A052126(n), A319988(n)]);
    v319996 = rgs_transform(vector(up_to,n,A319996aux(n)));
    A319996(n) = v319996[n];

A232540 Numbers n such that (n(n+1)/2) modulo sigma(n) = 1.

Original entry on oeis.org

10, 22, 34, 46, 58, 82, 94, 106, 118, 142, 166, 178, 202, 214, 226, 262, 274, 298, 334, 346, 358, 382, 385, 394, 430, 454, 466, 478, 502, 514, 526, 538, 562, 586, 622, 634, 694, 706, 718, 766, 778, 802, 838, 862, 886, 898, 922, 934, 958, 982, 1006, 1018, 1042
Offset: 1

Views

Author

Jaroslav Krizek, Nov 25 2013

Keywords

Comments

Also numbers n such that antisigma(n) modulo sigma(n) = 1. Antisigma(n) = A024816(n) = the sum of the nondivisors of n that are between 1 and n, sigma(n) = A000203(n) = the sum of the divisors of n.
Numbers n such that A232324(n) = 1.
Number 5950 is only squareful number from first 1400 terms (< 50000) of this sequence.
Conjecture: supersequence of A112774 (semiprimes of the form 6n+4).

Examples

			106 is in sequence because antisigma(106) mod sigma(106) = 5509 mod 162 = 1.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1100],Mod[(#(#+1))/2,DivisorSigma[1,#]]==1&] (* Harvey P. Dale, Sep 08 2017 *)

A173178 Numbers k such that 2*k+3 is a prime of the form 3*A024893(m) + 2.

Original entry on oeis.org

1, 4, 7, 10, 13, 19, 22, 25, 28, 34, 40, 43, 49, 52, 55, 64, 67, 73, 82, 85, 88, 94, 97, 112, 115, 118, 124, 127, 130, 133, 139, 145, 154, 157, 172, 175, 178, 190, 193, 199, 208, 214, 220, 223, 229, 232, 238, 244, 250, 253, 259, 277, 280, 283, 292, 295, 298, 307, 319
Offset: 1

Views

Author

Eric Desbiaux, Feb 11 2010

Keywords

Comments

With the Bachet-Bézout theorem implicating Gauss Lemma and the Fundamental Theorem of Arithmetic,
for k > 1, k = 2*a + 3*b (a and b integers)
first type
A001477 = (2*A080425) + (3*A008611)
A000040 = (2*A039701) + (3*A157966)
A024893 Numbers k such that 3*k + 2 is prime
A034936 Numbers k such that 3*k + 4 is prime
OR second type
A001477 = (2*A028242) + (3*A059841)
A000040 = (2*A067076) + (3*1)
A067076 Numbers k such that 2*k + 3 is prime
k a b OR a b
-- - - - -
0 0 0 0 0
1 - - - -
2 1 0 1 0
3 0 1 0 1
4 2 0 2 0
5 1 1 1 1
6 0 2 3 0
7 2 1 2 1
8 1 2 4 0
9 0 3 3 1
10 2 2 5 0
11 1 3 4 1
12 0 4 6 0
13 2 3 5 1
14 1 4 7 0
15 0 5 6 1
...
2* 1 + 3 OR 3* 1 + 2 = 5;
2* 4 + 3 OR 3* 3 + 2 = 11;
2* 7 + 3 OR 3* 5 + 2 = 17;
2*10 + 3 OR 3* 7 + 2 = 23;
2*13 + 3 OR 3* 9 + 2 = 29;
2*19 + 3 OR 3*13 + 2 = 41;
2*22 + 3 OR 3*15 + 2 = 47;
2*25 + 3 OR 3*17 + 2 = 53;
2*28 + 3 OR 3*19 + 2 = 59.
A024893 Numbers k such that 3k+2 is prime.
A007528 Primes of the form 6k-1.
A024898 Positive integers k such that 6k-1 is prime.
1, 4, 7, 10, 13, 19, ... = (3*(4*A024898 - A024893) - 7)/2 = (A112774 - 3*A024893 - 5)/2 = A003627 - (3*A024893 - 5)/2.

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 320], PrimeQ[(p = 2*# + 3)] && Mod[p, 3] == 2 &] (* Amiram Eldar, Jul 30 2024 *)

Formula

a(n) = 3*A059325(n) + 1. - Amiram Eldar, Jul 30 2024

Extensions

Data corrected and extended by Amiram Eldar, Jul 30 2024

A250398 Composite numbers whose sum of divisors divides the sum of their unrelated numbers.

Original entry on oeis.org

4, 10, 22, 34, 46, 58, 82, 94, 106, 118, 142, 166, 178, 202, 214, 226, 262, 274, 298, 334, 346, 358, 382, 394, 454, 466, 478, 493, 502, 514, 526, 538, 562, 586, 622, 634, 694, 706, 718, 766, 778, 802, 838, 862, 886, 898, 922, 934, 958, 982, 1006, 1018, 1042, 1114
Offset: 1

Views

Author

Paolo P. Lava, Nov 21 2014

Keywords

Comments

For a definition of unrelated number see A045763.
Most of the terms belong to A112774. First difference is at a(28) = 493.

Examples

			There is no unrelated number to 4. Therefore 0 / sigma(4) = 0 / 7 = 0 is an integer.
Unrelated numbers to 10 are 4, 6, 8 and their sum is 18. Now, 18 / sigma(10) = 18 / 18 = 1, that is an integer.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local n;
    for n from 1 to q do if not isprime(n) then
    if type((1+n*(n+1)/2-sigma(n)-n*phi(n)/2)/sigma(n),integer)
    then print(n); fi; fi; od; end: P(10^5);

A308169 Numbers k such that A023896(k) mod A000203(k) is prime.

Original entry on oeis.org

3, 7, 10, 11, 16, 19, 22, 23, 25, 27, 31, 34, 43, 46, 49, 58, 59, 71, 79, 82, 83, 94, 100, 103, 106, 118, 121, 131, 139, 142, 163, 166, 178, 191, 199, 202, 208, 211, 214, 223, 226, 251, 262, 271, 274, 298, 311, 331, 334, 346, 358, 359, 379, 382, 383, 394, 419, 443, 454, 463, 466, 478, 479, 484
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, May 15 2019

Keywords

Comments

Numbers k such that (k*A000010(k)/2) mod A000203(k) is prime.
The primes in the sequence are A092109.
The even semiprimes in the sequence are A112774.

Examples

			a(3)=10 is in the sequence because A023896(10) mod A000203(10) = 20 mod 6 = 2, and 2 is prime.
		

Crossrefs

Programs

  • Maple
    select(n -> isprime((n*numtheory:-phi(n)/2) mod numtheory:-sigma(n)), [$2..1000]);
  • PARI
    isok(n) = isprime(n*eulerphi(n)/2 % sigma(n)); \\ Michel Marcus, May 15 2019

A344872 Semiprimes of the form 3m+2.

Original entry on oeis.org

14, 26, 35, 38, 62, 65, 74, 77, 86, 95, 119, 122, 134, 143, 146, 155, 158, 161, 185, 194, 203, 206, 209, 215, 218, 221, 254, 278, 287, 299, 302, 305, 314, 323, 326, 329, 335, 341, 362, 365, 371, 377, 386, 395, 398, 407, 413, 422, 437, 446, 458, 473, 482, 485, 497
Offset: 1

Views

Author

Peter Munn, May 31 2021

Keywords

Comments

There are no square terms, as squares are congruent to 0 or 1 modulo 3.
Products of a prime of the form 3m+1 and a prime of the form 3m+2 (the former necessarily being of the form 6m+1).

Examples

			14 = 2 * 7 has 2 prime factors (counting repetitions) so is a semiprime, and 14 = 3*4 + 2, so has the form 3m+2. So 14 is in the sequence.
		

Crossrefs

Intersection of A001358 and A016789.
Disjoint union of A108172 and A112772.
Complement within A001358 of A001748, A112771 and A112774.
Subsequence of A344703.

Programs

  • Mathematica
    Select[Range[2,500,3],PrimeOmega@#==2&] (* Giorgos Kalogeropoulos, Jun 02 2021 *)
  • PARI
    isok(m) = bigomega(m) == 2 && m % 3 == 2;

A167857 Numbers whose divisors are represented by an integer polynomial.

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 10, 11, 13, 17, 19, 22, 23, 25, 29, 31, 34, 37, 41, 43, 46, 47, 49, 53, 55, 58, 59, 61, 67, 71, 73, 79, 82, 83, 85, 89, 91, 94, 97, 101, 103, 106, 107, 109, 113, 115, 118, 121, 127, 131, 133, 137, 139, 142, 145, 149, 151, 157, 163, 166, 167, 169, 171
Offset: 1

Views

Author

T. D. Noe, Nov 13 2009

Keywords

Comments

That is, these numbers n have the property that there is a polynomial f(x) with integer coefficients whose values at x=0..tau(n)-1 are the divisors of n, where tau(n) is the number of divisors of n.
Every prime has this property, as do 1 and 9, the squares of primes of the form 6k+1, and semiprimes p*q with p and q both primes of the form 3k-1 or 3k+1. Terms of the form p^2*q also appear. We can find terms of the form p^m for any m. For example, 2311^13 is the smallest 13th power that appears. For any m, it seems that p^m appears for p a prime of the form k*m#+1, where m# is the product of the primes up to m. Are there terms with three distinct prime divisors?

Examples

			The divisors of 55 are (1, 5, 11, 55). The polynomial 1+15x-17x^2+6x^3 takes these values at x=0..3.
		

Crossrefs

Cf. A108164, A108166, A112774 (forms of semiprimes)
Cf. A002476 (primes of the form 6k+1)
Cf. A132230 (primes of the form 30k+1)
Cf. A073103 (primes of the form 210k+1)
Cf. A073917 (least prime of the form k*prime(n)#+1)

Programs

  • Mathematica
    Select[Range[1000], And @@ IntegerQ /@ CoefficientList[Expand[InterpolatingPolynomial[Divisors[ # ], x+1]], x] &]
  • PARI
    is(n)=my(d=divisors(n));denominator(content(polinterpolate([0..#d-1],d))) == 1 \\ Charles R Greathouse IV, Jan 29 2016
Showing 1-10 of 11 results. Next