A004770
Numbers of the form 8k+5; or, numbers whose binary expansion ends in 101.
Original entry on oeis.org
5, 13, 21, 29, 37, 45, 53, 61, 69, 77, 85, 93, 101, 109, 117, 125, 133, 141, 149, 157, 165, 173, 181, 189, 197, 205, 213, 221, 229, 237, 245, 253, 261, 269, 277, 285, 293, 301, 309, 317, 325, 333, 341, 349, 357, 365, 373, 381, 389, 397, 405, 413, 421, 429, 437, 445
Offset: 1
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 248.
-
a004770 = (subtract 3) . (* 8)
a004770_list = [5, 13 ..] -- Reinhard Zumkeller, Aug 17 2012
-
[8*n-3: n in [1..60]]; // Vincenzo Librandi, May 28 2011
-
Range[5, 1000, 8] (* Vladimir Joseph Stephan Orlovsky, May 27 2011 *)
LinearRecurrence[{2,-1},{5,13},60] (* or *) NestList[#+8&,5,60] (* Harvey P. Dale, Jun 28 2021 *)
-
a(n)=8*n-3 \\ Charles R Greathouse IV, Sep 24 2015
-
[8*n-3 for n in range(1,57)] # Stefano Spezia, Jul 23 2025
A220062
Number A(n,k) of n length words over k-ary alphabet, where neighboring letters are neighbors in the alphabet; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 2, 0, 0, 1, 4, 4, 2, 0, 0, 1, 5, 6, 6, 2, 0, 0, 1, 6, 8, 10, 8, 2, 0, 0, 1, 7, 10, 14, 16, 12, 2, 0, 0, 1, 8, 12, 18, 24, 26, 16, 2, 0, 0, 1, 9, 14, 22, 32, 42, 42, 24, 2, 0, 0, 1, 10, 16, 26, 40, 58, 72, 68, 32, 2, 0, 0
Offset: 0
A(5,3) = 12: there are 12 words of length 5 over 3-ary alphabet {a,b,c}, where neighboring letters are neighbors in the alphabet: ababa, ababc, abcba, abcbc, babab, babcb, bcbab, bcbcb, cbaba, cbabc, cbcba, cbcbc.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, 7, ...
0, 0, 2, 4, 6, 8, 10, 12, ...
0, 0, 2, 6, 10, 14, 18, 22, ...
0, 0, 2, 8, 16, 24, 32, 40, ...
0, 0, 2, 12, 26, 42, 58, 74, ...
0, 0, 2, 16, 42, 72, 104, 136, ...
0, 0, 2, 24, 68, 126, 188, 252, ...
Columns k=0, 2-10 give:
A000007,
A040000,
A029744(n+2) for n>0,
A006355(n+3) for n>0,
A090993(n+1) for n>0,
A090995(n-1) for n>2,
A129639,
A153340,
A153362,
A153360.
-
b:= proc(n, i, k) option remember; `if`(n=0, 1,
`if`(i=0, add(b(n-1, j, k), j=1..k),
`if`(i>1, b(n-1, i-1, k), 0)+
`if`(i b(n, 0, k):
seq(seq(A(n, d-n), n=0..d), d=0..14);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i == 0, Sum[b[n-1, j, k], {j, 1, k}], If[i>1, b[n-1, i-1, k], 0] + If[iJean-François Alcover, Jan 19 2015, after Alois P. Heinz *)
-
TransferGf(m,u,t,v,z)=vector(m,i,u(i))*matsolve(matid(m)-z*matrix(m,m,i,j,t(i,j)),vectorv(m,i,v(i)));
ColGf(m,z)=1+z*TransferGf(m, i->1, (i,j)->abs(i-j)==1, j->1, z);
a(n,k)=Vec(ColGf(k,x) + O(x^(n+1)))[n+1];
for(n=0, 7, for(k=0, 7, print1( a(n,k), ", ") ); print(); );
\\ Andrew Howroyd, Apr 17 2017
A188135
a(n) = 8*n^2 + 2*n + 1.
Original entry on oeis.org
1, 11, 37, 79, 137, 211, 301, 407, 529, 667, 821, 991, 1177, 1379, 1597, 1831, 2081, 2347, 2629, 2927, 3241, 3571, 3917, 4279, 4657, 5051, 5461, 5887, 6329, 6787, 7261, 7751, 8257, 8779, 9317, 9871, 10441, 11027, 11629, 12247, 12881, 13531, 14197, 14879, 15577, 16291, 17021, 17767
Offset: 0
A115284
Correlation triangle of 4-C(1,n)-2*C(0,n) (A113311).
Original entry on oeis.org
1, 3, 3, 4, 10, 4, 4, 15, 15, 4, 4, 16, 26, 16, 4, 4, 16, 31, 31, 16, 4, 4, 16, 32, 42, 32, 16, 4, 4, 16, 32, 47, 47, 32, 16, 4, 4, 16, 32, 48, 58, 48, 32, 16, 4, 4, 16, 32, 48, 63, 63, 48, 32, 16, 4, 4, 16, 32, 48, 64, 74, 64, 48, 32, 16, 4
Offset: 0
Triangle begins:
1;
3, 3;
4, 10, 4;
4, 15, 15, 4;
4, 16, 26, 16, 4;
4, 16, 31, 31, 16, 4;
4, 16, 32, 42, 32, 16, 4;
A247961
Numbers n such that 45^n + 2 is prime.
Original entry on oeis.org
0, 1, 2, 3, 4, 38, 40, 104, 114, 135, 417, 1251, 14786, 16720, 43831, 152659
Offset: 1
Cf. similar sequences listed in
A247957.
A268730
a(n) = Product_{k = 0..n} 2*(8*k + 5).
Original entry on oeis.org
10, 260, 10920, 633360, 46868640, 4218177600, 447126825600, 54549472723200, 7527827235801600, 1159285394313446400, 197078517033285888000, 36656604168191175168000, 7404634041974617383936000, 1614210221150466589698048000, 377725191749209181989343232000
Offset: 0
a(0) = (1 + 2 + 3 + 4) = 10;
a(1) = (1 + 2 + 3 + 4)*(5 + 6 + 7 + 8) = 260;
a(2) = (1 + 2 + 3 + 4)*(5 + 6 + 7 + 8) *(9 + 10 + 11 + 12) = 10920;
a(3) = (1 + 2 + 3 + 4)*(5 + 6 + 7 + 8) *(9 + 10 + 11 + 12)*(13 + 14 + 15 + 16) = 633360, etc.
-
[&*[(16*k+10): k in [0..n-1]]: n in [1..20]]; // Vincenzo Librandi, Feb 12 2016
-
FullSimplify[Table[(2^(4 n + 13/4) Gamma[1/8] Gamma[n + 13/8])/(Sqrt[Pi] Gamma[1/4]), {n, 0, 14}]]
Table[Product[16 k + 10, {k, 0, n - 1}], {n, 20}] (* Vincenzo Librandi, Feb 12 2016 *)
-
x='x+O('x^50); Vec(serlaplace(10/(1 - 16*x)^(13/8))) \\ G. C. Greubel, Apr 09 2017
Showing 1-6 of 6 results.
Comments