cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A019669 Decimal expansion of Pi/2.

Original entry on oeis.org

1, 5, 7, 0, 7, 9, 6, 3, 2, 6, 7, 9, 4, 8, 9, 6, 6, 1, 9, 2, 3, 1, 3, 2, 1, 6, 9, 1, 6, 3, 9, 7, 5, 1, 4, 4, 2, 0, 9, 8, 5, 8, 4, 6, 9, 9, 6, 8, 7, 5, 5, 2, 9, 1, 0, 4, 8, 7, 4, 7, 2, 2, 9, 6, 1, 5, 3, 9, 0, 8, 2, 0, 3, 1, 4, 3, 1, 0, 4, 4, 9, 9, 3, 1, 4, 0, 1, 7, 4, 1, 2, 6, 7, 1, 0, 5, 8, 5, 3
Offset: 1

Views

Author

Keywords

Comments

With offset 2, decimal expansion of 5*Pi. - Omar E. Pol, Oct 03 2013
Decimal expansion of the number of radians in a quadrant. - John W. Nicholson, Oct 07 2013
Not the same as A085679. First differing term occurs at 10^-49, as list -49, or 51st counting term (a(-49)= 5 and A085679(-49) = 4). - John W. Nicholson, Oct 07 2013
5*Pi is also the surface area of a sphere whose diameter equals the square root of 5. More generally x*Pi is also the surface area of a sphere whose diameter equals the square root of x. - Omar E. Pol, Dec 22 2013
Pi/2 is also the radius of a sphere whose surface area equals the volume of the circumscribed cube. - Omar E. Pol, Dec 27 2013

Examples

			Pi/2 = 1.570796326794896619231321691639751442098584699...
5*Pi = 15.70796326794896619231321691639751442098584699...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 1.4.1 and 1.4.2, pp. 20-21.

Crossrefs

Cf. A053300 (continued fraction), A060294 (2/Pi).
Cf. A000796, A019692, A122952, A019694 (Pi through 4*Pi), A106854.

Programs

Formula

Pi/2 = log(i)/i, where i = sqrt(-1). - Eric Desbiaux, Jun 27 2009
Pi/2 = Product_{n>=1} (n/(n+1))^((-1)^n) = 2 * 2/3 * 4/3 * 4/5 * 6/5 * 6/7 * 8/7 * 8/9 * 10/9 * ... (Wallis formula). - William Keith and Alonso del Arte, Jun 24 2012
Equals Sum_{k>1} 2^k/binomial(2*k,k). - Bruno Berselli, Sep 11 2015
The previous result is the particular case n = 1 of the more general identity: Pi/2 = 4^(n-1) * n!/(2*n)! * Sum_{k >= 2} 2^(k+1)*(k + n - 1)!*(k + 2*n - 2)!/(2*k + 2*n - 2)! valid for n = 0,1,2,... . - Peter Bala, Oct 26 2016
Pi/2 = Product_{n>=1} (4*n^2)/(4*n^2-1). - Fred Daniel Kline, Oct 29 2016
Pi/2 = lim_{n->oo} F(2^(n+3))/2, with one half of the area of a regular 2^(n+3)-gon, for n >= 0, inscribed in the unit circle, written as iterated square roots of 2 as F(2^(n+3))/2 = 2^n*sqrt(2 + sq2(n)), with sq2(n) = sqrt(2 + sq2(n-1)), n >= 1, with input sq2(0) = 0 (2 appears n times in sq2(n)). Viète's infinite product formula works with the partial product F(2^(n+2))/2 = Product_{j=1..n} (2/sq2(j)), n >= 1, which corresponds to the above given formula. - Wolfdieter Lang, Jul 06 2018
Pi/2 = Integral_{x = 0..oo} sin(x)^2/x^2 dx = 1/2 + Sum_{n >= 1} sin(n)^2/n^2, by the Abel-Plana formula. - Peter Bala, Nov 05 2019
From Amiram Eldar, Aug 15 2020: (Start)
Equals Sum_{k>=0} k!/(2*k + 1)!!.
Equals Sum_{k>=0} (-1)^k/(k + 1/2).
Equals Integral_{x=0..oo} 1/(x^2 + 1) dx.
Equals Integral_{x=0..oo} sin(x)/x dx.
Equals Integral_{x=0..oo} exp(x/2)/(exp(x) + 1) dx.
Equals Product_{p prime > 2} p/(p + (-1)^((p-1)/2)). (End)
Pi/2 = Integral_{x = 0..oo} 1/(1 - x^2 + x^4) dx = (1 + 2/3 + 1/5) - (1/7 + 2/9 + 1/11) + (1/13 + 2/15 + 1/17) - .... - Peter Bala, Jul 22 2022
Equals arcsin(9/10) + sqrt(19)*Sum_{k >= 1} A106854(k-1)/(k*10^k) (see Bailey and Crandall, 2001). - Paolo Xausa, Jul 15 2024
Equals 2F1(1/2,1/2 ; 3/2; 1). - R. J. Mathar, Aug 20 2024
Pi/2 = [1;1,1/2,1/3,...,1/n,...] by Wallis's approximation. - Thomas Ordowski, Oct 19 2024
From Stefano Spezia, Oct 21 2024: (Start)
Equals Sum_{k>=0} 2^k/((2*k + 1)*binomial(2*k,k)) (see Finch).
Equals Limit_{n->oo} 2^(4*n)/((2*n + 1)*binomial(2*n,n)^2) (see Finch). (End)
Equals Integral_{x=-oo..oo} sech((2*x^3 + x^2 - 5*x)/(x^2 - 1)) dx. - Kritsada Moomuang, May 29 2025

A019670 Decimal expansion of Pi/3.

Original entry on oeis.org

1, 0, 4, 7, 1, 9, 7, 5, 5, 1, 1, 9, 6, 5, 9, 7, 7, 4, 6, 1, 5, 4, 2, 1, 4, 4, 6, 1, 0, 9, 3, 1, 6, 7, 6, 2, 8, 0, 6, 5, 7, 2, 3, 1, 3, 3, 1, 2, 5, 0, 3, 5, 2, 7, 3, 6, 5, 8, 3, 1, 4, 8, 6, 4, 1, 0, 2, 6, 0, 5, 4, 6, 8, 7, 6, 2, 0, 6, 9, 6, 6, 6, 2, 0, 9, 3, 4, 4, 9, 4, 1, 7, 8, 0, 7, 0, 5, 6, 8
Offset: 1

Views

Author

N. J. A. Sloane, Dec 11 1996

Keywords

Comments

With an offset of zero, also the decimal expansion of Pi/30 ~ 0.104719... which is the average arithmetic area of the 0-winding sectors enclosed by a closed Brownian planar path, of a given length t, according to Desbois, p. 1. - Jonathan Vos Post, Jan 23 2011
Polar angle (or apex angle) of the cone that subtends exactly one quarter of the full solid angle. See comments in A238238. - Stanislav Sykora, Jun 07 2014
60 degrees in radians. - M. F. Hasler, Jul 08 2016
Volume of a quarter sphere of radius 1. - Omar E. Pol, Aug 17 2019
Also smallest positive zero of Sum_{k>=1} cos(k*x)/k = -log(2*|sin(x/2)|). Proof of this identity: Sum_{k>=1} cos(k*x)/k = Re(Sum_{k>=1} exp(k*x*i)/k) = Re(-log(1-exp(x*i))) = -log(2*|sin(x/2)|), x != 2*m*Pi, where i = sqrt(-1). - Jianing Song, Nov 09 2019
The area of a circle circumscribing a unit-area regular dodecagon. - Amiram Eldar, Nov 05 2020

Examples

			Pi/3 = 1.04719755119659774615421446109316762806572313312503527365831486...
From _Peter Bala_, Nov 16 2016: (Start)
Case n = 1. Pi/3 = 18 * Sum_{k >= 0} (-1)^(k+1)( 1/((6*k - 5)*(6*k + 1)*(6*k + 7)) + 1/((6*k - 1)*(6*k + 5)*(6*k + 11)) ).
Using the methods of Borwein et al. we can find the following asymptotic expansion for the tails of this series: for N divisible by 6 there holds Sum_{k >= N/6} (-1)^(k+1)( 1/((6*k - 5)*(6*k + 1)*(6*k + 7)) + 1/((6*k - 1)*(6*k + 5)*(6*k + 11)) ) ~ 1/N^3 + 6/N^5 + 1671/N ^7 - 241604/N^9 + ..., where the sequence [1, 0, 6, 0, 1671, 0, -241604, 0, ...] is the sequence of coefficients in the expansion of ((1/18)*cosh(2*x)/cosh(3*x)) * sinh(3*x)^2 = x^2/2! + 6*x^4/4! + 1671*x^6/6! - 241604*x^8/8! + .... Cf. A024235, A278080 and A278195. (End)
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.3, p. 489.

Crossrefs

Integral_{x=0..oo} 1/(1+x^m) dx: A013661 (m=2), A248897 (m=3), A093954 (m=4), A352324 (m=5), this sequence (m=6), A352125 (m=8), A094888 (m=10).

Programs

Formula

A third of A000796, a sixth of A019692, the square root of A100044.
Sum_{k >= 0} (-1)^k/(6k+1) + (-1)^k/(6k+5). - Charles R Greathouse IV, Sep 08 2011
Product_{k >= 1}(1-(6k)^(-2))^(-1). - Fred Daniel Kline, May 30 2013
From Peter Bala, Feb 05 2015: (Start)
Pi/3 = Sum {k >= 0} binomial(2*k,k)*1/(2*k + 1)*(1/16)^k = 2F1(1/2,1/2;3/2;1/4). Similar series expansions hold for Pi^2 (A002388), Pi^3 (A091925) and Pi/(2*sqrt(2)) (A093954.)
The integer sequences A(n) := 4^n*(2*n + 1)! and B(n) := A(n)*( Sum {k = 0..n} binomial(2*k,k)*1/(2*k + 1)*(1/16)^k ) both satisfy the second-order recurrence equation u(n) = (20*n^2 + 4*n + 1)*u(n-1) - 8*(n - 1)*(2*n - 1)^3*u(n-2). From this observation we can obtain the continued fraction expansion Pi/3 = 1 + 1/(24 - 8*3^3/(89 - 8*2*5^3/(193 - 8*3*7^3/(337 - ... - 8*(n - 1)*(2*n - 1)^3/((20*n^2 + 4*n + 1) - ... ))))). Cf. A002388 and A093954. (End)
Equals Sum_{k >= 1} arctan(sqrt(3)*L(2k)/L(4k)) where L=A000032. See also A005248 and A056854. - Michel Marcus, Mar 29 2016
Equals Product_{n >= 1} A016910(n) / A136017(n). - Fred Daniel Kline, Jun 09 2016
Equals Integral_{x=-oo..oo} sech(x)/3 dx. - Ilya Gutkovskiy, Jun 09 2016
From Peter Bala, Nov 16 2016: (Start)
Euler's series transformation applied to the series representation Pi/3 = Sum_{k >= 0} (-1)^k/(6*k + 1) + (-1)^k/(6*k + 5) given above by Greathouse produces the faster converging series Pi/3 = (1/2) * Sum_{n >= 0} 3^n*n!*( 1/(Product_{k = 0..n} (6*k + 1)) + 1/(Product_{k = 0..n} (6*k + 5)) ).
The series given above by Greathouse is the case n = 0 of the more general result Pi/3 = 9^n*(2*n)! * Sum_{k >= 0} (-1)^(k+n)*( 1/(Product_{j = -n..n} (6*k + 1 + 6*j)) + 1/(Product_{j = -n..n} (6*k + 5 + 6*j)) ) for n = 0,1,2,.... Cf. A003881. See the example section for notes on the case n = 1.(End)
Equals Product_{p>=5, p prime} p/sqrt(p^2-1). - Dimitris Valianatos, May 13 2017
Equals A019699/4 or A019693/2. - Omar E. Pol, Aug 17 2019
Equals Integral_{x >= 0} (sin(x)/x)^4 = 1/2 + Sum_{n >= 0} (sin(n)/n)^4, by the Abel-Plana formula. - Peter Bala, Nov 05 2019
Equals Integral_{x=0..oo} 1/(1 + x^6) dx. - Bernard Schott, Mar 12 2022
Pi/3 = -Sum_{n >= 1} i/(n*P(n, 1/sqrt(-3))*P(n-1, 1/sqrt(-3))), where i = sqrt(-1) and P(n, x) denotes the n-th Legendre polynomial. The first twenty terms of the series gives the approximation Pi/3 = 1.04719755(06...) correct to 8 decimal places. - Peter Bala, Mar 16 2024
Equals Integral_{x >= 0} (2*x^2 + 1)/((x^2 + 1)*(4*x^2 + 1)) dx. - Peter Bala, Feb 12 2025

A228719 Decimal expansion of 3*Pi/5.

Original entry on oeis.org

1, 8, 8, 4, 9, 5, 5, 5, 9, 2, 1, 5, 3, 8, 7, 5, 9, 4, 3, 0, 7, 7, 5, 8, 6, 0, 2, 9, 9, 6, 7, 7, 0, 1, 7, 3, 0, 5, 1, 8, 3, 0, 1, 6, 3, 9, 6, 2, 5, 0, 6, 3, 4, 9, 2, 5, 8, 4, 9, 6, 6, 7, 5, 5, 3, 8, 4, 6, 8, 9, 8, 4, 3, 7, 7, 1, 7, 2, 5, 3, 9, 9, 1, 7, 6, 8, 2, 0, 8, 9, 5, 2, 0, 5, 2, 7, 0, 2, 4, 0, 7, 8, 9
Offset: 1

Views

Author

Omar E. Pol, Oct 03 2013

Keywords

Comments

With offset 2, decimal expansion of 6*Pi.
6*Pi is also the surface area of a sphere whose diameter equals the square root of 6. More generally x*Pi is also the surface area of a sphere whose diameter equals the square root of x. - Omar E. Pol, Dec 22 2013
The interior angle of a regular pentagon expressed in radians. - Stefano Spezia, May 30 2025

Examples

			3*Pi/5 = 1.8849555921538759430775860299677017305183...
6*Pi = 18.849555921538759430775860299677017305183...
		

Crossrefs

Cf. A000796, A019692, A122952, A019694, A019669 (Pi through 5*Pi).
Cf. A374172.

Programs

Formula

Equals 1/(10*A374172). - Hugo Pfoertner, Jul 16 2024

A177870 Decimal expansion of 3*Pi/4.

Original entry on oeis.org

2, 3, 5, 6, 1, 9, 4, 4, 9, 0, 1, 9, 2, 3, 4, 4, 9, 2, 8, 8, 4, 6, 9, 8, 2, 5, 3, 7, 4, 5, 9, 6, 2, 7, 1, 6, 3, 1, 4, 7, 8, 7, 7, 0, 4, 9, 5, 3, 1, 3, 2, 9, 3, 6, 5, 7, 3, 1, 2, 0, 8, 4, 4, 4, 2, 3, 0, 8, 6, 2, 3, 0, 4, 7, 1, 4, 6, 5, 6, 7, 4, 8, 9, 7, 1, 0, 2, 6, 1, 1, 9, 0, 0, 6, 5, 8, 7, 8, 0, 0, 9, 8, 6, 6, 1, 1
Offset: 1

Views

Author

R. J. Mathar, Dec 13 2010

Keywords

Comments

As radians, this is equal to 135 degrees (on an analog clock, the span of 22 minutes and 30 seconds). - Alonso del Arte, Feb 03 2013
Ratio of the area of an arbelos to the area of its associated parbelos. - Jonathan Sondow, Nov 28 2013
(3*Pi/4)*a^2 is the area between a cissoid of Diocles and its asymptote when polar equation of cissoid is r = a*sin^2(t)/cos(t) and Cartesian equation is x * (x^2+y^2) = a * y^2 or y = +-x * sqrt(x/(a-x)). See the curve at the Mathcurve link and formula. - Bernard Schott, Jul 14 2020
The smallest nonnegative solution to sin(x) = -cos(x). - Wolfe Padawer, Apr 12 2023

Examples

			2.35619449019234492884698253745962716314787704953132936573120...
		

References

  • Jonathan Borwein & Peter Borwein, A Dictionary of Real Numbers. Pacific Grove, California: Wadsworth & Brooks/Cole Advanced Books & Software (1990) p. 168

Crossrefs

Reciprocal of A232715.

Programs

  • Maple
    evalf(3*Pi/4) ;
  • Mathematica
    RealDigits[N[3(Pi/4), 110]][[1]]
  • PARI
    3*Pi/4 \\ Charles R Greathouse IV, Sep 30 2022

Formula

Equals (3/4)*A000796 = 3*A003881 = 6*A019675 = A122952/4.
Equals 1 + (3/5) + (3*4)/(5*7) + (3*4*5)/(5*7*9) + ... = hypergeom([3,1],[5/2],1/2). - Peter Bala, Oct 30 2019
Equals 2 * Integral_{x=0..1} x * sqrt(x/(1-x)) dx (cissoid). - Bernard Schott, Jul 14 2020
Equals Sum_{k>=1} arctan(2/k^2). - Amiram Eldar, Aug 10 2020
Equals Integral_{x=-oo..oo} (x^2 + 1)/(x^4 + 4) dx. - Kritsada Moomuang, Jun 04 2025

A228824 Decimal expansion of 4*Pi/5.

Original entry on oeis.org

2, 5, 1, 3, 2, 7, 4, 1, 2, 2, 8, 7, 1, 8, 3, 4, 5, 9, 0, 7, 7, 0, 1, 1, 4, 7, 0, 6, 6, 2, 3, 6, 0, 2, 3, 0, 7, 3, 5, 7, 7, 3, 5, 5, 1, 9, 5, 0, 0, 0, 8, 4, 6, 5, 6, 7, 7, 9, 9, 5, 5, 6, 7, 3, 8, 4, 6, 2, 5, 3, 1, 2, 5, 0, 2, 8, 9, 6, 7, 1, 9, 8, 9, 0, 2, 4, 2, 7, 8, 6, 0, 2, 7, 3, 6, 9, 3, 6, 5, 4, 3, 8, 5, 7
Offset: 1

Views

Author

Omar E. Pol, Oct 03 2013

Keywords

Comments

With offset 2, decimal expansion of 8*Pi.
8*Pi is also the surface area of a sphere whose diameter equals the square root of 8, hence its radius equals the square root of 2. More generally x*Pi is also the surface area of a sphere whose diameter equals the square root of x. - Omar E. Pol, Dec 18 2013

Examples

			4*Pi/5 = 2.5132741228718345907701147066236023073577...
8*Pi = 25.132741228718345907701147066236023073577...
		

Crossrefs

Cf. A000796, A019692, A122952, A019694, A019669, A228719, A228721 (Pi through 7*Pi).

Programs

A336266 Decimal expansion of (3/16)*Pi.

Original entry on oeis.org

5, 8, 9, 0, 4, 8, 6, 2, 2, 5, 4, 8, 0, 8, 6, 2, 3, 2, 2, 1, 1, 7, 4, 5, 6, 3, 4, 3, 6, 4, 9, 0, 6, 7, 9, 0, 7, 8, 6, 9, 6, 9, 2, 6, 2, 3, 8, 2, 8, 3, 2, 3, 4, 1, 4, 3, 2, 8, 0, 2, 1, 1, 1, 0, 5, 7, 7, 1, 5, 5, 7, 6, 1, 7, 8, 6, 6, 4, 1, 8, 7, 2, 4, 2, 7, 5, 6, 5
Offset: 0

Views

Author

Bernard Schott, Jul 15 2020

Keywords

Comments

Area of one egg of the "double egg" whose polar equation is r(t) = a * cos(t)^2 and a Cartesian equation is (x^2+y^2)^3 = a^2*x^4 is equal to (3/16)*Pi * a^2. See the curve at the Mathcurve link.

Examples

			0.58904862254808623221174563436490679078696926...
		

References

  • L. Lorentzen and H. Waadeland, Continued Fractions with Applications, North-Holland 1992, p. 586.

Crossrefs

Cf. A259830 (length of an egg).
Cf. A019692 (2*Pi for deltoid), A122952 (3*Pi for cycloid and nephroid), A180434 (2-Pi/2 for Newton strophoid), A197723 (3*Pi/2 for cardioid), A336308.

Programs

  • Maple
    evalf(3*Pi/16,140);
  • Mathematica
    RealDigits[3*Pi/16, 10, 100][[1]] (* Amiram Eldar, Jul 15 2020 *)
  • PARI
    3*Pi/16 \\ Michel Marcus, Jul 15 2020

Formula

Equals Integral_{t=0..Pi} (1/2) * cos(t)^4 * dt.
Equals Integral_{x=0..oo} 1/(x^2 + 1)^3 dx. - Amiram Eldar, Aug 13 2020
From Peter Bala, Mar 21 2024: (Start)
Equals 1/2 + Sum_{n >= 0} (-1)^n/(u(n)*u(-n)), where the polynomial u(n) = (2*n - 1)*(4*n^2 - 4*n + 3)/3 = A057813(n-1) has its zeros on the vertical line Re(z) = 1/2 in the complex plane. Cf. A336308.
Equals 1/2 + 1/(11 + 3/(12 + 15/(12 + 35/(12 + ... + (4*n^2 - 1)/(12 + ... ))))). See Lorentzen and Waadeland, p. 586, equation 4.7.10 with n = 2. (End)

A228721 Decimal expansion of 7*Pi.

Original entry on oeis.org

2, 1, 9, 9, 1, 1, 4, 8, 5, 7, 5, 1, 2, 8, 5, 5, 2, 6, 6, 9, 2, 3, 8, 5, 0, 3, 6, 8, 2, 9, 5, 6, 5, 2, 0, 1, 8, 9, 3, 8, 0, 1, 8, 5, 7, 9, 5, 6, 2, 5, 7, 4, 0, 7, 4, 6, 8, 2, 4, 6, 1, 2, 1, 4, 6, 1, 5, 4, 7, 1, 4, 8, 4, 4, 0, 0, 3, 4, 6, 2, 9, 9, 0, 3, 9, 6, 2, 4, 3, 7, 7, 7, 3, 9, 4, 8, 1, 9, 4, 7, 5, 8, 7, 5
Offset: 2

Views

Author

Omar E. Pol, Oct 03 2013

Keywords

Comments

7*Pi is also the surface area of a sphere whose diameter equals the square root of 7. More generally x*Pi is also the surface area of a sphere whose diameter equals the square root of x. - Omar E. Pol, Dec 22 2013

Examples

			21.99114857512855266923850368295652018938...
		

Crossrefs

Cf. A000796, A019692, A122952, A019694, A019669, A228719 (Pi through 6*Pi).

Programs

A336308 Decimal expansion of (5/32)*Pi.

Original entry on oeis.org

4, 9, 0, 8, 7, 3, 8, 5, 2, 1, 2, 3, 4, 0, 5, 1, 9, 3, 5, 0, 9, 7, 8, 8, 0, 2, 8, 6, 3, 7, 4, 2, 2, 3, 2, 5, 6, 5, 5, 8, 0, 7, 7, 1, 8, 6, 5, 2, 3, 6, 0, 2, 8, 4, 5, 2, 7, 3, 3, 5, 0, 9, 2, 5, 4, 8, 0, 9, 6, 3, 1, 3, 4, 8, 2, 2, 2, 0, 1, 5, 6, 0, 3, 5, 6, 3, 0
Offset: 0

Views

Author

Bernard Schott, Jul 17 2020

Keywords

Comments

(5*Pi/32)*a^2 is the area of a simple folium also called ovoid, or Kepler egg whose polar equation is r = a*cos^3(t) and Cartesian equation is (x^2+y^2)^2 = a * x^3. See the curve at the Mathcurve link.

Examples

			0.4908738521234051935097880286374223256558077186523602...
		

Crossrefs

Cf. A019692 (2*Pi for deltoid), A122952 (3*Pi for cycloid and nephroid), A180434 (2-Pi/2 for Newton strophoid), A197723 (3*Pi/2 for cardioid), A336266 (3*Pi/16 for double egg).

Programs

  • Maple
    evalf(5*Pi/32, 140);
  • Mathematica
    RealDigits[5*Pi/32, 10, 100][[1]] (* Amiram Eldar, Jul 17 2020 *)
  • PARI
    5*Pi/32 \\ Michel Marcus, Jul 17 2020

Formula

Equals Integral_{t=0..Pi} cos^6(t)/2 dt (area of simple folium).
From Amiram Eldar, Aug 13 2020: (Start)
Equals Integral_{x=0..oo} 1/(x^2 + 1)^4 dx.
Equals Integral_{x=-1..1} x^3 * arcsin(x) dx. (End)
Equals 5/9 - 10*Sum_{n >= 1} (-1)^(n+1)/(u(n)*u(-n)), where the polynomial u(n) = (2*n - 1)^2*(4*n^2 - 4*n + 9)/3 satisfies the difference equation 16*u(n) = (2*n - 1)*(u(n+1) - u(n-1)) and has its zeros on the vertical line Re(z) = 1/2 in the complex plane. Cf. A336266. - Peter Bala, Mar 25 2024

A229939 Decimal expansion of 9*Pi/10.

Original entry on oeis.org

2, 8, 2, 7, 4, 3, 3, 3, 8, 8, 2, 3, 0, 8, 1, 3, 9, 1, 4, 6, 1, 6, 3, 7, 9, 0, 4, 4, 9, 5, 1, 5, 5, 2, 5, 9, 5, 7, 7, 7, 4, 5, 2, 4, 5, 9, 4, 3, 7, 5, 9, 5, 2, 3, 8, 8, 7, 7, 4, 5, 0, 1, 3, 3, 0, 7, 7, 0, 3, 4, 7, 6, 5, 6, 5, 7, 5, 8, 8, 0, 9, 8, 7, 6, 5, 2, 3, 1, 3, 4, 2, 8, 0, 7, 9, 0, 5, 3, 6, 1, 1, 8, 3, 9
Offset: 1

Views

Author

Omar E. Pol, Oct 06 2013

Keywords

Comments

With offset 2, decimal expansion of 9*Pi.
9*Pi is also the surface area of a sphere whose diameter equals the square root of 9. More generally x*Pi is also the surface area of a sphere whose diameter equals the square root of x. - Omar E. Pol, Dec 22 2013

Examples

			9*Pi/10 = 2.827433388230813914616379044951552595777...
9*Pi = 28.27433388230813914616379044951552595777...
		

Crossrefs

Programs

Formula

9*Pi = Sum_{j >= 0} j*(j - 1)*(j - 2)*(j - 3)*2^(j+1) / ((2*j + 1)*binomial(2*j, j)). - Peter Bala, Nov 21 2023

A173625 Decimal expansion of 3(Pi - 1).

Original entry on oeis.org

6, 4, 2, 4, 7, 7, 7, 9, 6, 0, 7, 6, 9, 3, 7, 9, 7, 1, 5, 3, 8, 7, 9, 3, 0, 1, 4, 9, 8, 3, 8, 5, 0, 8, 6, 5, 2, 5, 9, 1, 5, 0, 8, 1, 9, 8, 1, 2, 5, 3, 1, 7, 4, 6, 2, 9, 2, 4, 8, 3, 3, 7, 7, 6, 9, 2, 3, 4, 4, 9, 2, 1, 8, 8, 5, 8, 6, 2, 6, 9, 9, 5, 8, 8, 4, 1, 0, 4, 4, 7, 6, 0, 2, 6, 3, 5, 1, 2, 0, 3, 9, 4, 6, 4, 4
Offset: 1

Views

Author

Mark Cidade (marxidad(AT)gmail.com), Nov 08 2010

Keywords

Crossrefs

Essentially the same as A122952.

Programs

Showing 1-10 of 12 results. Next