cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A093766 Decimal expansion of Pi/(2*sqrt(3)).

Original entry on oeis.org

9, 0, 6, 8, 9, 9, 6, 8, 2, 1, 1, 7, 1, 0, 8, 9, 2, 5, 2, 9, 7, 0, 3, 9, 1, 2, 8, 8, 2, 1, 0, 7, 7, 8, 6, 6, 1, 4, 2, 0, 3, 3, 1, 2, 4, 0, 4, 6, 3, 7, 0, 2, 8, 7, 7, 8, 4, 9, 4, 2, 4, 6, 7, 6, 9, 4, 0, 6, 1, 5, 9, 0, 5, 6, 3, 1, 7, 6, 9, 4, 1, 8, 4, 2, 0, 6, 2, 4, 9, 4, 1, 0, 6, 0, 3, 0, 0, 8, 4, 4, 2, 8
Offset: 0

Views

Author

Eric W. Weisstein, Apr 15 2004

Keywords

Comments

Density of densest packing of equal circles in two dimensions (achieved for example by the A2 lattice).
The number gives the areal coverage (90.68... percent) of the close hexagonal (densest) packing of circles in the plane. The hexagonal unit cell is a rhombus of side length 1 and height sqrt(3)/2; the area of the unit cell is sqrt(3)/2 and the four parts of circles add to an area of one circle of radius 1/2, which is Pi/4. - R. J. Mathar, Nov 22 2011
Ratio of surface area of a sphere to the regular octahedron whose edge equals the diameter of the sphere. - Omar E. Pol, Dec 09 2013

Examples

			0.906899682117108925297039128821077866142033124046370287784942...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer, 3rd. ed., 1998. See p. xix.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.7, p. 506.
  • L. B. W. Jolley, Summation of Series, Dover (1961), Eq. (84) on page 16.
  • Joel L. Schiff, The Laplace Transform: Theory and Applications, Springer-Verlag New York, Inc. (1999). See p. 149.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 30.

Crossrefs

Programs

Formula

Equals (5/6)*(7/6)*(11/12)*(13/12)*(17/18)*(19/18)*(23/24)*(29/30)*(31/30)*..., where the numerators are primes > 3 and the denominators are the nearest multiples of 6.
Equals Sum_{n>=1} 1/A134667(n). [Jolley]
Equals Sum_{n>=0} (-1)^n/A124647(n). [Jolley eq. 273]
Equals A000796 / A010469. - Omar E. Pol, Dec 09 2013
Continued fraction expansion: 1 - 2/(18 + 12*3^2/(24 + 12*5^2/(32 + ... + 12*(2*n - 1)^2/((8*n + 8) + ... )))). See A254381 for a sketch proof. - Peter Bala, Feb 04 2015
From Peter Bala, Feb 16 2015: (Start)
Equals 4*Sum_{n >= 0} 1/((6*n + 1)*(6*n + 5)).
Continued fraction: 1/(1 + 1^2/(4 + 5^2/(2 + 7^2/(4 + 11^2/(2 + ... + (6*n + 1)^2/(4 + (6*n + 5)^2/(2 + ... ))))))). (End)
The inverse is (2*sqrt(3))/Pi = Product_{n >= 1} 1 + (1 - 1/(4*n))/(4*n*(9*n^2 - 9*n + 2)) = (35/32) * (1287/1280) * (8075/8064) * (5635/5632) * (72819/72800) * ... = 1.102657790843585... - Dimitris Valianatos, Aug 31 2019
From Amiram Eldar, Aug 15 2020: (Start)
Equals Integral_{x=0..oo} 1/(x^2 + 3) dx.
Equals Integral_{x=0..oo} 1/(3*x^2 + 1) dx. (End)
Equals 1 + Sum_{k>=1} ( 1/(6*k+1) - 1/(6*k-1) ). - Sean A. Irvine, Jul 24 2021
For positive integer k, Pi/(2*sqrt(3)) = Sum_{n >= 0} (6*k + 4)/((6*n + 1)*(6*n + 6*k + 5)) - Sum_{n = 0..k-1} 1/(6*n + 5). - Peter Bala, Jul 10 2024
From Stefano Spezia, Jun 05 2025: (Start)
Equals Sum_{k>=0} (-1)^k/((k + 1)*(3*k + 1)).
Equals Integral_{x=0..oo} 1/(x^4 + x^2 + 1) dx.
Equals Integral_{x=0..oo} x^2/(x^4 + x^2 + 1) dx. (End)
Equals sqrt(A072691) = 3*A381671. - Hugo Pfoertner, Jun 05 2025

Extensions

Entry revised by N. J. A. Sloane, Feb 10 2013

A165665 a(n) = (3*2^n - 2) * 2^n.

Original entry on oeis.org

1, 8, 40, 176, 736, 3008, 12160, 48896, 196096, 785408, 3143680, 12578816, 50323456, 201310208, 805273600, 3221159936, 12884770816, 51539345408, 206157905920, 824632672256, 3298532786176, 13194135339008, 52776549744640
Offset: 0

Views

Author

Klaus Brockhaus, Sep 24 2009

Keywords

Comments

Binomial transform of A058481. Second binomial transform of (A082505 without initial term 0). Third binomial transform of A010686.
Partial sums are in A060867.
a(n) is the sum of the odd numbers taken progressively by moving through them by 2^n-tuples. a(0)=1; a(1) = 3+5=8; a(2) = 7+9+11+13 = 40; a(3) = 15+17+19+21+23+25+27+29 = 176; a(n) = sum_{k=0,1,..,A000225(n)} (A000225(n+1)+2*k). - J. M. Bergot, Dec 06 2014
The number of active (ON, black) cells at stage 2^n-1 of the two-dimensional cellular automaton defined by "Rule 773", based on the 5-celled von Neumann neighborhood. - Robert Price, May 23 2016

Crossrefs

Cf. A058481, A082505, A010686 (repeat 1, 5), A060867, A010036, A124647.

Programs

  • Magma
    [ (3*2^n-2)*2^n: n in [0..23] ];
    
  • Mathematica
    Table[(3*2^n-2)2^n,{n,0,30}] (* or  *) LinearRecurrence[{6,-8},{1,8},30] (* Harvey P. Dale, Nov 18 2020 *)
  • PARI
    a(n)=(3*2^n-2)*2^n \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(n) = 6*a(n-1)-8*a(n-2) for n > 1; a(0) = 1, a(1) = 8.
a(n) = 8*A010036(n-1) for n > 0.
G.f.: (2*x+1)/((1-2*x)*(1-4*x)).
E.g.f.: 3*e^(4*x) - 2*e^(2*x). - Robert Israel, Dec 15 2014

A171220 a(n) = (2n + 1)*5^n.

Original entry on oeis.org

1, 15, 125, 875, 5625, 34375, 203125, 1171875, 6640625, 37109375, 205078125, 1123046875, 6103515625, 32958984375, 177001953125, 946044921875, 5035400390625, 26702880859375, 141143798828125, 743865966796875, 3910064697265625, 20503997802734375, 107288360595703125
Offset: 0

Views

Author

Jaume Oliver Lafont, Dec 05 2009

Keywords

Comments

Inserting x=1/sqrt(b) into the power series expansion of arctanh(x) yields the general BBP-type formula log((sqrt(b)+1)/(sqrt(b)-1))*sqrt(b)/2 = Sum_{k>=0} 1/((2k+1)b^k).
This sequence illustrates case b=5, with
Sum_{k>=0} 1/a(k) = sqrt(5)*log((1+sqrt(5))/2).

Crossrefs

Cf. A014480 ((2n+1)*2^n), A124647 ((2n+1)*3^n), A058962 ((2n+1)*4^n), A155988 ((2n+1)*9^n), A165283 ((2n+1)*16^n), A166725 ((2n+1)*25^n).

Programs

  • Magma
    [(2*n+1)*5^n: n in [0..25]]; // Vincenzo Librandi, Jun 08 2011
  • PARI
    a(n)=(2*n+1)*5^n
    

Formula

a(n) = 10*a(n-1) - 25*a(n-2).
O.g.f: (1+5*x)/(1-5*x)^2.
Sum_{n>=0} (-1)^n/a(n) = sqrt(5)*arctan(1/sqrt(5)). - Amiram Eldar, Feb 26 2022
E.g.f.: exp(5*x)*(1 + 10*x). - Stefano Spezia, May 09 2023

A199299 a(n) = (2*n + 1)*6^n.

Original entry on oeis.org

1, 18, 180, 1512, 11664, 85536, 606528, 4199040, 28553472, 191476224, 1269789696, 8344332288, 54419558400, 352638738432, 2272560758784, 14575734521856, 93096626946048, 592433080565760, 3757718396731392, 23765029860409344, 149902496042582016, 943288877536247808
Offset: 0

Views

Author

Philippe Deléham, Nov 04 2011

Keywords

Crossrefs

Programs

  • Magma
    [(2*n+1)*6^n: n in [0..30]]; // Vincenzo Librandi, Nov 05 2011
    
  • Mathematica
    a[n_] := (2*n + 1)*6^n; Array[a, 25, 0] (* Amiram Eldar, Dec 10 2022 *)
  • PARI
    a(n) = (2*n+1)*6^n \\ Amiram Eldar, Dec 10 2022

Formula

a(n) = 12*a(n-1) - 36*a(n-2).
G.f.: (1+6*x)/(1-6*x)^2.
a(n) = 6*a(n-1) + 2*6^n. - Vincenzo Librandi, Nov 05 2011
From Amiram Eldar, Dec 10 2022: (Start)
Sum_{n>=0} 1/a(n) = sqrt(6)*arccoth(sqrt(6)).
Sum_{n>=0} (-1)^n/a(n) = sqrt(6)*arccot(sqrt(6)). (End)
E.g.f.: exp(6*x)*(1 + 12*x). - Stefano Spezia, May 07 2023

A199300 a(n) = (2*n + 1)*7^n.

Original entry on oeis.org

1, 21, 245, 2401, 21609, 184877, 1529437, 12353145, 98001617, 766718533, 5931980229, 45478515089, 346032180025, 2616003280989, 19668469112621, 147174406808233, 1096686708796833, 8142067989552245, 60251303122686613, 444556912229552577, 3271482918202092041
Offset: 0

Views

Author

Philippe Deléham, Nov 04 2011

Keywords

Crossrefs

Programs

  • Magma
    [(2*n+1)*7^n: n in [0..30]]; // Vincenzo Librandi, Nov 05 2011
    
  • Mathematica
    a[n_] := (2*n + 1)*7^n; Array[a, 25, 0] (* Amiram Eldar, Dec 10 2022 *)
    LinearRecurrence[{14,-49},{1,21},30] (* Harvey P. Dale, Mar 26 2025 *)
  • PARI
    a(n) = (2*n+1)*7^n \\ Amiram Eldar, Dec 10 2022

Formula

a(n) = 14*a(n-1) - 49*a(n-2).
G.f.: (1+7*x)/(1-7*x)^2.
a(n) = 7*a(n-1) + 2*7^n. - Vincenzo Librandi, Nov 05 2011
From Amiram Eldar, Dec 10 2022: (Start)
Sum_{n>=0} 1/a(n) = sqrt(7)*arccoth(sqrt(7)).
Sum_{n>=0} (-1)^n/a(n) = sqrt(7)*arccot(sqrt(7)). (End)
E.g.f.: exp(7*x)*(1 + 14*x). - Stefano Spezia, May 09 2023

Extensions

a(15) corrected by Vincenzo Librandi, Nov 05 2011

A199301 a(n) = (2n+1)*8^n.

Original entry on oeis.org

1, 24, 320, 3584, 36864, 360448, 3407872, 31457280, 285212672, 2550136832, 22548578304, 197568495616, 1717986918400, 14843406974976, 127543348822016, 1090715534753792, 9288674231451648, 78812993478983680, 666532744850833408, 5620492334958379008, 47269781688880726016
Offset: 0

Views

Author

Philippe Deléham, Nov 04 2011

Keywords

Crossrefs

Cf. A001018 (Powers of 8), A005408 (2n+1).

Programs

Formula

a(n) = 16*a(n-1)-64*a(n-2).
G.f.: (1+8*x)/(1-8*x)^2.
a(n) = 8*(a(n-1)+2^(3*n-2)). - Vincenzo Librandi, Nov 05 2011
a(n) = A005408(n) * A001018(n). - Wesley Ivan Hurt, Oct 30 2014
From Amiram Eldar, Dec 10 2022: (Start)
Sum_{n>=0} 1/a(n) = sqrt(8)*arccoth(sqrt(8)).
Sum_{n>=0} (-1)^n/a(n) = sqrt(8)*arccot(sqrt(8)). (End)
E.g.f.: exp(8*x)*(1 + 16*x). - Stefano Spezia, May 09 2023

Extensions

a(18) corrected by Vincenzo Librandi, Nov 05 2011

A340183 a(n) = Product_{1<=j,k,m<=n-1} (4*sin(j*Pi/(2*n))^2 + 4*sin(k*Pi/(2*n))^2 + 4*sin(m*Pi/(2*n))^2).

Original entry on oeis.org

1, 6, 1157625, 170875128460147163136, 448524809573174705684873233798538664686384705625
Offset: 1

Views

Author

Seiichi Manyama, Dec 31 2020

Keywords

Comments

(a(n)/(n*3^(n-1)))^(1/3) is an integer.

Crossrefs

Programs

  • Mathematica
    Round[Table[2^((n-1)^3)* Product[3 - Cos[j*Pi/n] - Cos[k*Pi/n] - Cos[m*Pi/n], {j, 1, n-1}, {k, 1, n-1}, {m, 1, n-1}], {n, 1, 5}]] (* Vaclav Kotesovec, Jan 04 2021 *)
  • PARI
    default(realprecision, 500);
    {a(n) = round(prod(j=1, n-1, prod(k=1, n-1, prod(m=1, n-1, 4*sin(j*Pi/(2*n))^2+4*sin(k*Pi/(2*n))^2+4*sin(m*Pi/(2*n))^2))))}

Formula

a(n) = Product_{1<=i,j,k<=n-1} (4*f(i*Pi/(2*n))^2 + 4*g(j*Pi/(2*n))^2 + 4*h(k*Pi/(2*n))^2), where f(x), g(x) and h(x) are sin(x) or cos(x).
Limit_{n->infinity} a(n)^(1/n^3) = exp(8*A340322/Pi^3). - Vaclav Kotesovec, Jan 05 2021

A340181 a(n) = Product_{1<=j,k,m<=n} (4*sin(j*Pi/(2*n+1))^2 + 4*sin(k*Pi/(2*n+1))^2 + 4*sin(m*Pi/(2*n+1))^2).

Original entry on oeis.org

1, 9, 7486875, 14334918272193811385583, 1483160703050490588200236172057973908184332257091136
Offset: 0

Views

Author

Seiichi Manyama, Dec 31 2020

Keywords

Comments

(a(n)/((2n + 1)*3^n))^(1/3) is an integer.

Crossrefs

Programs

  • Mathematica
    Round[Table[2^(n^3)* Product[3 - Cos[2*j*Pi/(2*n + 1)] - Cos[2*k*Pi/(2*n + 1)] - Cos[2*m*Pi/(2*n + 1)], {j, 1, n}, {k, 1, n}, {m, 1, n}], {n, 0, 5}]] (* Vaclav Kotesovec, Jan 04 2021 *)
  • PARI
    default(realprecision, 500);
    {a(n) = round(prod(j=1, n, prod(k=1, n, prod(m=1, n, 4*sin(j*Pi/(2*n+1))^2+4*sin(k*Pi/(2*n+1))^2+4*sin(m*Pi/(2*n+1))^2))))}

Formula

Limit_{n->infinity} a(n)^(1/n^3) = exp(8*A340322/Pi^3). - Vaclav Kotesovec, Jan 05 2021

A362885 Array read by ascending antidiagonals: A(n, k) = (1 + 2*n)*k^n.

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 5, 6, 1, 0, 7, 20, 9, 1, 0, 9, 56, 45, 12, 1, 0, 11, 144, 189, 80, 15, 1, 0, 13, 352, 729, 448, 125, 18, 1, 0, 15, 832, 2673, 2304, 875, 180, 21, 1, 0, 17, 1920, 9477, 11264, 5625, 1512, 245, 24, 1, 0, 19, 4352, 32805, 53248, 34375, 11664, 2401, 320, 27, 1
Offset: 0

Views

Author

Stefano Spezia, May 08 2023

Keywords

Examples

			The array begins:
    1,  1,   1,    1,     1,     1, ...
    0,  3,   6,    9,    12,    15, ...
    0,  5,  20,   45,    80,   125, ...
    0,  7,  56,  189,   448,   875, ...
    0,  9, 144,  729,  2304,  5625, ...
    0, 11, 352, 2673, 11264, 34375, ...
    ...
		

Crossrefs

Cf. A000007 (k=0), A000012 (n=0), A004248, A005408 (k=1), A008585 (n=1), A014480 (k=2), A033429 (n=2), A058962 (k=4), A124647 (k=3), A155988 (k=9), A171220 (k=5), A176043, A199299 (k=6), A199300 (k=7), A199301 (k=8), A244727 (n=3), A362886 (antidiagonal sums).

Programs

  • Mathematica
    A[n_,k_]:=(1+2n)k^n; Join[{1}, Table[A[n-k,k],{n,10},{k,0,n}]]//Flatten (* or *)
    A[n_,k_]:=SeriesCoefficient[(1+k*x)/(1-k*x)^2,{x,0,n}]; Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten (* or *)
    A[n_,k_]:=n!SeriesCoefficient[Exp[k*x](1+2k*x),{x,0,n}]; Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten

Formula

A(n, k) = A005408(n)*A004248(n, k).
O.g.f. of column k: (1 + k*x)/(1 - k*x)^2.
E.g.f. of column k: exp(k*x)*(1 + 2*k*x).
A(n, n) = A176043(n+1).
Showing 1-9 of 9 results.