cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A000043 Mersenne exponents: primes p such that 2^p - 1 is prime. Then 2^p - 1 is called a Mersenne prime.

Original entry on oeis.org

2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609, 57885161, 74207281
Offset: 1

Views

Author

Keywords

Comments

Equivalently, integers k such that 2^k - 1 is prime.
It is believed (but unproved) that this sequence is infinite. The data suggest that the number of terms up to exponent N is roughly K log N for some constant K.
Length of prime repunits in base 2.
The associated perfect number N=2^(p-1)*M(p) (=A019279*A000668=A000396), has 2p (=A061645) divisors with harmonic mean p (and geometric mean sqrt(N)). - Lekraj Beedassy, Aug 21 2004
In one of his first publications Euler found the numbers up to 31 but erroneously included 41 and 47.
Equals number of bits in binary expansion of n-th Mersenne prime (A117293). - Artur Jasinski, Feb 09 2007
Number of divisors of n-th even perfect number, divided by 2. Number of divisors of n-th even perfect number that are powers of 2. Number of divisors of n-th even perfect number that are multiples of n-th Mersenne prime A000668(n). - Omar E. Pol, Feb 24 2008
Number of divisors of n-th even superperfect number A061652(n). Numbers of divisors of n-th superperfect number A019279(n), assuming there are no odd superperfect numbers. - Omar E. Pol, Mar 01 2008
Differences between exponents when the even perfect numbers are represented as differences of powers of 2, for example: The 5th even perfect number is 33550336 = 2^25 - 2^12 then a(5)=25-12=13 (see A135655, A133033, A090748). - Omar E. Pol, Mar 01 2008
Number of 1's in binary expansion of n-th even perfect number (see A135650). Number of 1's in binary expansion of divisors of n-th even perfect number that are multiples of n-th Mersenne prime A000668(n) (see A135652, A135653, A135654, A135655). - Omar E. Pol, May 04 2008
Indices of the numbers A006516 that are also even perfect numbers. - Omar E. Pol, Aug 30 2008
Indices of Mersenne numbers A000225 that are also Mersenne primes A000668. - Omar E. Pol, Aug 31 2008
The (prime) number p appears in this sequence if and only if there is no prime q<2^p-1 such that the order of 2 modulo q equals p; a special case is that if p=4k+3 is prime and also q=2p+1 is prime then the order of 2 modulo q is p so p is not a term of this sequence. - Joerg Arndt, Jan 16 2011
Primes p such that sigma(2^p) - sigma(2^p-1) = 2^p-1. - Jaroslav Krizek, Aug 02 2013
Integers k such that every degree k irreducible polynomial over GF(2) is also primitive, i.e., has order 2^k-1. Equivalently, the integers k such that A001037(k) = A011260(k). - Geoffrey Critzer, Dec 08 2019
Conjecture: for k > 1, 2^k-1 is (a Mersenne) prime or k = 2^(2^m)+1 (is a Fermat number) if and only if (k-1)^(2^k-2) == 1 (mod (2^k-1)k^2). - Thomas Ordowski, Oct 05 2023
Conjecture: for p prime, 2^p-1 is (a Mersenne) prime or p = 2^(2^m)+1 (is a Fermat number) if and only if (p-1)^(2^p-2) == 1 (mod 2^p-1). - David Barina, Nov 25 2024
Already as of Dec. 2020, all exponents up to 10^8 had been verified, implying that 74207281, 77232917 and 82589933 are indeed the next three terms. As of today, all exponents up to 130439863 have been tested at least once, see the GIMPS Milestones Report. - M. F. Hasler, Apr 11 2025
On June 23. 2025 all exponents up to 74340751 have been verified, confirming that 74207281 is the exponent of the 49th Mersenne Prime. - Rodolfo Ruiz-Huidobro, Jun 23 2025

Examples

			Corresponding to the initial terms 2, 3, 5, 7, 13, 17, 19, 31 ... we get the Mersenne primes 2^2 - 1 = 3, 2^3 - 1 = 7, 2^5 - 1 = 31, 127, 8191, 131071, 524287, 2147483647, ... (see A000668).
		

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 4.
  • J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §3.2 Prime Numbers, p. 79.
  • R. K. Guy, Unsolved Problems in Number Theory, Section A3.
  • F. Lemmermeyer, Reciprocity Laws From Euler to Eisenstein, Springer-Verlag, 2000, p. 57.
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 19.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 47.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 132-134.
  • B. Tuckerman, The 24th Mersenne prime, Notices Amer. Math. Soc., 18 (Jun, 1971), Abstract 684-A15, p. 608.

Crossrefs

Cf. A000668 (Mersenne primes).
Cf. A028335 (integer lengths of Mersenne primes).
Cf. A000225 (Mersenne numbers).
Cf. A001348 (Mersenne numbers with n prime).

Programs

  • Mathematica
    MersennePrimeExponent[Range[48]] (* Eric W. Weisstein, Jul 17 2017; updated Oct 21 2024 *)
  • PARI
    isA000043(n) = isprime(2^n-1) \\ Michael B. Porter, Oct 28 2009
    
  • PARI
    is(n)=my(h=Mod(2,2^n-1)); for(i=1, n-2, h=2*h^2-1); h==0||n==2 \\ Lucas-Lehmer test for exponent e. - Joerg Arndt, Jan 16 2011, and Charles R Greathouse IV, Jun 05 2013
    forprime(e=2,5000,if(is(e),print1(e,", "))); /* terms < 5000 */
    
  • Python
    from sympy import isprime, prime
    for n in range(1,100):
        if isprime(2**prime(n)-1):
            print(prime(n), end=', ') # Stefano Spezia, Dec 06 2018

Formula

a(n) = log((1/2)*(1+sqrt(1+8*A000396(n))))/log(2). - Artur Jasinski, Sep 23 2008 (under the assumption there are no odd perfect numbers, Joerg Arndt, Feb 23 2014)
a(n) = A000005(A061652(n)). - Omar E. Pol, Aug 26 2009
a(n) = A000120(A000396(n)), assuming there are no odd perfect numbers. - Omar E. Pol, Oct 30 2013

Extensions

Also in the sequence: p = 74207281. - Charles R Greathouse IV, Jan 19 2016
Also in the sequence: p = 77232917. - Eric W. Weisstein, Jan 03 2018
Also in the sequence: p = 82589933. - Gord Palameta, Dec 21 2018
a(46) = 42643801 and a(47) = 43112609, whose ordinal positions in the sequence are now confirmed, communicated by Eric W. Weisstein, Apr 12 2018
a(48) = 57885161, whose ordinal position in the sequence is now confirmed, communicated by Benjamin Przybocki, Jan 05 2022
Also in the sequence: p = 136279841. - Eric W. Weisstein, Oct 21 2024
As of Jan 31 2025, 48 terms are known, and are shown in the DATA section. Four additional numbers are known to be in the sequence, namely 74207281, 77232917, 82589933, and 136279841, but they may not be the next terms. See the GIMP website for the latest information. - N. J. A. Sloane, Jan 31 2025

A127936 Numbers k such that 1 + Sum_{i=1..k} 2^(2*i-1) is prime.

Original entry on oeis.org

1, 2, 3, 5, 6, 8, 9, 11, 15, 21, 30, 39, 50, 63, 83, 95, 99, 156, 173, 350, 854, 1308, 1769, 2903, 5250, 5345, 5639, 6195, 7239, 21368, 41669, 47684, 58619, 63515, 69468, 70539, 133508, 134993, 187160, 493095
Offset: 1

Views

Author

Artur Jasinski, Feb 08 2007, Feb 09 2007

Keywords

Comments

If this sequence is infinite then so is A124401.
Equals A127965(n)/2.
The sum has the simple closed form 1 + 2/3*(4^n-1). - Stefan Steinerberger, Nov 24 2007
Terms beyond a(30) correspond to probable primes, cf. A000978. - M. F. Hasler, Aug 29 2008

Examples

			a(1)=1 because 1 + 2 = 3 is prime;
a(2)=2 because 1 + 2 + 2^3 = 11 is prime;
a(3)=3 because 1 + 2 + 2^3 + 2^5 = 43 is prime;
a(4)=5 because 1 + 2 + 2^3 + 2^5 + 2^7 + 2^9 = 683 is prime;
...
		

Crossrefs

Programs

Formula

a(n) = floor(A000978(n)/2) = ceiling(log(4)(A000979(n))); A000978(n) = 2 a(n) + 1; A000979(n) = (2*4^a(n)+1)/3. - M. F. Hasler, Aug 29 2008

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 11 2007
2 more terms from Stefan Steinerberger, Nov 24 2007
6 more terms from Dmitry Kamenetsky, Jul 12 2008
a(30)-a(40) calculated from A000978 by M. F. Hasler, Aug 29 2008

A127962 Binary expansion of A000979(n).

Original entry on oeis.org

11, 1011, 101011, 1010101011, 101010101011, 1010101010101011, 101010101010101011, 1010101010101010101011, 101010101010101010101010101011, 101010101010101010101010101010101010101011
Offset: 1

Views

Author

Artur Jasinski, Feb 09 2007

Keywords

Crossrefs

Programs

  • Mathematica
    b[n_] := FromDigits[IntegerDigits[n, 2]]; b /@ Select[Table[(2^p + 1)/3, {p, Prime[Range[15]]}], PrimeQ] (* Amiram Eldar, Jul 23 2023 *)
  • Python
    from gmpy2 import divexact
    from sympy import prime, isprime
    A127962 = [int(bin(p)[2:]) for p in (divexact(2**prime(n)+1,3) for n in range(2,10**2)) if isprime(p)] # Chai Wah Wu, Sep 04 2014

Formula

a(n) = A007088(A000979(n)). - Amiram Eldar, Jul 23 2023

Extensions

Edited by N. J. A. Sloane, Jun 11 2007

A127963 Number of 1's in A127962(n).

Original entry on oeis.org

2, 3, 4, 6, 7, 9, 10, 12, 16, 22, 31, 40, 51, 64, 84, 96, 100, 157, 174, 351, 855, 1309, 1770, 2904, 5251, 5346, 5640, 6196, 7240, 21369, 41670, 47685, 58620, 63516, 69469, 70540, 133509, 134994, 187161, 493096, 2015700
Offset: 1

Views

Author

Artur Jasinski, Feb 09 2007

Keywords

Crossrefs

Programs

  • Mathematica
    b = {}; Do[c = 1 + Sum[2^(2n - 1), {n, 1, x}]; If[PrimeQ[c], AppendTo[b, c]], {x, 0, 1000}]; a = {}; Do[AppendTo[a, FromDigits[IntegerDigits[b[[x]], 2]]], {x, 1, Length[b]}]; d = {}; Do[AppendTo[d, DigitCount[a[[x]], 10, 1]], {x, 1, Length[a]}]; d (* Artur Jasinski, Feb 09 2007 *)
    DigitCount[#, 2, 1]& /@ Select[Table[(2^p + 1)/3, {p, Prime[Range[300]]}], PrimeQ] (* Amiram Eldar, Jul 23 2023 *)

Formula

a(n) = A000120(A000979(n)). - Michel Marcus, Nov 07 2013
a(n) = A007953(A127962(n)). - Amiram Eldar, Jul 23 2023

Extensions

a(22)-a(29) from Vincenzo Librandi, Mar 31 2012
a(30)-a(41) from Amiram Eldar, Jul 23 2023

A127964 Number of 0's in the binary expansion of A127962(n).

Original entry on oeis.org

0, 1, 2, 4, 5, 7, 8, 10, 14, 20, 29, 38, 49, 62, 82, 94, 98, 155, 172, 349, 853, 1307, 1768, 2902, 5249, 5344, 5638, 6194, 7238, 21367, 41668, 47683, 58618, 63514, 69467, 70538, 133507, 134992, 187159, 493094, 2015698
Offset: 1

Views

Author

Artur Jasinski, Feb 09 2007

Keywords

Comments

Apparently numbers k such that (2^(2*k+3)+1)/3 is prime. - James R. Buddenhagen, Apr 14 2011 [This is true. See the second formula. - Amiram Eldar, Oct 13 2024]

Crossrefs

Programs

  • Mathematica
    b = {}; Do[c = 1 + Sum[2^(2n - 1), {n, 1, x}]; If[PrimeQ[c], AppendTo[b, c]], {x, 0, 1000}]; a = {}; Do[AppendTo[a, FromDigits[IntegerDigits[b[[x]], 2]]], {x, 1, Length[b]}]; d = {}; Do[AppendTo[d, DigitCount[a[[x]], 10, 0]], {x, 1, Length[a]}]; d
    (Select[Prime[Range[200]], PrimeQ[(2^# + 1)/3] &] - 3)/2 (* Amiram Eldar, Oct 13 2024 *)

Formula

a(n) = A023416(A000979(n)). - Michel Marcus, Nov 07 2013
a(n) = (A000978(n)-3)/2. - Amiram Eldar, Oct 13 2024

Extensions

a(22)-a(29) from Vincenzo Librandi, Mar 31 2012
a(30)-a(41) from Amiram Eldar, Oct 13 2024

A127965 Number of bits in A127962(n).

Original entry on oeis.org

2, 4, 6, 10, 12, 16, 18, 22, 30, 42, 60, 78, 100, 126, 166, 190, 198, 312, 346, 700, 1708, 2616, 3538, 5806, 10500, 10690, 11278, 12390, 14478, 42736, 83338, 95368, 117238, 127030, 138936, 141078, 267016, 269986, 374320, 986190, 4031398
Offset: 1

Views

Author

Artur Jasinski, Feb 09 2007

Keywords

Crossrefs

Programs

  • Mathematica
    b = {}; Do[c = 1 + Sum[2^(2n - 1), {n, 1, x}]; If[PrimeQ[c], AppendTo[b, c]], {x, 0, 1000}]; a = {}; Do[AppendTo[a, FromDigits[IntegerDigits[b[[x]], 2]]], {x, 1, Length[b]}]; d = {}; Do[AppendTo[d, DigitCount[a[[x]], 10, 0]+DigitCount[a[[x]], 10, 1]], {x, 1, Length[a]}]; d

Formula

a(n) = A127964(n) + A127963(n).
a(n) = 1 + floor(log_2(A000979(n))) = 1 + floor(log_2(2^A000978(n)+1) - A020857) = A000978(n) - 1. - R. J. Mathar, Feb 01 2008

Extensions

a(22)-a(29) from Vincenzo Librandi, Mar 30 2012
a(30)-a(41) from Amiram Eldar, Oct 19 2024
Showing 1-6 of 6 results.