cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 27 results. Next

A173066 a(n) = A130665(n-1) - A160120(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 6, 0, 6, 6, 36, 12, 12, 12, 18, 12, 18, 18, 48, 24, 30, 30, 60, 36, 60, 72, 198, 120, 108, 108, 114, 108, 114, 114, 144, 120, 126, 126, 156, 132, 156, 168, 294, 216, 210, 210
Offset: 1

Views

Author

Omar E. Pol, May 29 2010

Keywords

Crossrefs

Extensions

More terms from Nathaniel Johnston, Nov 15 2010

A173067 a(n) = A130665(n-1) - A160715(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 6, 6, 6, 6, 12, 6
Offset: 1

Views

Author

Omar E. Pol, May 29 2010

Keywords

Crossrefs

A147562 Number of "ON" cells at n-th stage in the "Ulam-Warburton" two-dimensional cellular automaton.

Original entry on oeis.org

0, 1, 5, 9, 21, 25, 37, 49, 85, 89, 101, 113, 149, 161, 197, 233, 341, 345, 357, 369, 405, 417, 453, 489, 597, 609, 645, 681, 789, 825, 933, 1041, 1365, 1369, 1381, 1393, 1429, 1441, 1477, 1513, 1621, 1633, 1669, 1705, 1813, 1849, 1957, 2065, 2389, 2401, 2437, 2473
Offset: 0

Views

Author

N. J. A. Sloane, based on emails from Franklin T. Adams-Watters, R. J. Mathar and David W. Wilson, Apr 29 2009

Keywords

Comments

Studied by Holladay and Ulam circa 1960. See Fig. 1 and Example 1 of the Ulam reference. - N. J. A. Sloane, Aug 02 2009.
Singmaster calls this the Ulam-Warburton cellular automaton. - N. J. A. Sloane, Aug 05 2009
On the infinite square grid, start with all cells OFF.
Turn a single cell to the ON state.
At each subsequent step, each cell with exactly one neighbor ON is turned ON, and everything that is already ON remains ON.
Here "neighbor" refers to the four adjacent cells in the X and Y directions.
Note that "neighbor" could equally well refer to the four adjacent cells in the diagonal directions, since the graph formed by Z^2 with "one-step rook" adjacencies is isomorphic to Z^2 with "one-step bishop" adjacencies.
Also toothpick sequence starting with a central X-toothpick followed by T-toothpicks (see A160170 and A160172). The sequence gives the number of polytoothpicks in the structure after n-th stage. - Omar E. Pol, Mar 28 2011
It appears that this sequence shares infinitely many terms with both A162795 and A169707, see Formula section and Example section. - Omar E. Pol, Feb 20 2015
It appears that the positive terms are also the odd terms (a bisection) of A151920. - Omar E. Pol, Mar 06 2015
Also, the number of active (ON, black) cells in the n-th stage of growth of two-dimensional cellular automaton defined by Wolfram's "Rule 558" or "Rule 686" based on the 5-celled von Neumann neighborhood. - Robert Price, May 10 2016
From Omar E. Pol, Mar 05 2019: (Start)
a(n) is also the total number of "hidden crosses" after 4*n stages in the toothpick structure of A139250, including the central cross, beginning to count the crosses when their nuclei are totally formed with 4 quadrilaterals.
a(n) is also the total number of "flowers with six petals" after 4*n stages in the toothpick structure of A323650.
Note that the location of the "nuclei of the hidden crosses" and the "flowers with six petals" in both toothpick structures is essentially the same as the location of the "ON" cells in the version "one-step bishop" of this sequence (see the illustration of initial terms, figure 2). (End)
This sequence has almost exactly the same graph as A187220, A162795, A169707 and A160164 which is twice A139250. - Omar E. Pol, Jun 18 2022

Examples

			If we label the generations of cells turned ON by consecutive numbers we get a rosetta cell pattern:
. . . . . . . . . . . . . . . . .
. . . . . . . . 4 . . . . . . . .
. . . . . . . 4 3 4 . . . . . . .
. . . . . . 4 . 2 . 4 . . . . . .
. . . . . 4 3 2 1 2 3 4 . . . . .
. . . . . . 4 . 2 . 4 . . . . . .
. . . . . . . 4 3 4 . . . . . . .
. . . . . . . . 4 . . . . . . . .
. . . . . . . . . . . . . . . . .
In the first generation, only the central "1" is ON, a(1)=1. In the next generation, we turn ON four "2", leading to a(2)=a(1)+4=5. In the third generation, four "3" are turned ON, a(3)=a(2)+4=9. In the fourth generation, each of the four wings allows three 4's to be turned ON, a(4)=a(3)+4*3=21.
From _Omar E. Pol_, Feb 18 2015: (Start)
Also, written as an irregular triangle T(j,k), j>=0, k>=1, in which the row lengths are the terms of A011782:
1;
5;
9,   21;
25,  37, 49, 85;
89, 101,113,149,161,197,233,341;
345,357,369,405,417,453,489,597,609,645,681,789,825,933,1041,1365;
...
The right border gives the positive terms of A002450.
(End)
It appears that T(j,k) = A162795(j,k) = A169707(j,k), if k is a power of 2, for example: it appears that the three mentioned triangles only share the elements from the columns 1, 2, 4, 8, 16, ... - _Omar E. Pol_, Feb 20 2015
		

References

  • S. Ulam, On some mathematical problems connected with patterns of growth of figures, pp. 215-224 of R. E. Bellman, ed., Mathematical Problems in the Biological Sciences, Proc. Sympos. Applied Math., Vol. 14, Amer. Math. Soc., 1962.
  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 928.

Crossrefs

Programs

  • Maple
    Since this is the partial sum sequence of A147582, it is most easily obtained using the Maple code given in A147582.
    # [x,y] coordinates of cells on
    Lse := [[0,0]] ;
    # enclosing rectangle of the cells on (that is, minima and maxima in Lse)
    xmin := 0 ;
    xmax := 0 ;
    ymin := 0 ;
    ymax := 0 ;
    # count neighbors of x,y which are on; return 0 if [x,y] is in L
    cntnei := proc(x,y,L)
    local a,p,xpt,ypt;
    a := 0 ;
    if not [x,y] in L then
    for p in Lse do
    xpt := op(1,p) ;
    ypt := op(2,p) ;
    if ( abs(xpt-x) = 1 and ypt=y ) or ( x=xpt and abs(ypt-y) = 1) then
    a := a+1 ;
    fi;
    od:
    fi:
    RETURN(a) ;
    end:
    # loop over generations/steps
    for stp from 1 to 10 do
    Lnew := [] ;
    for x from xmin-1 to xmax+1 do
    for y from ymin-1 to ymax+1 do
    if cntnei(x,y,Lse) = 1 then
    Lnew := [op(Lnew),[x,y]] ;
    fi;
    od:
    od:
    for p in Lnew do
    xpt := op(1,p) ;
    ypt := op(2,p) ;
    xmin := min(xmin,xpt) ;
    xmax := max(xmax,xpt) ;
    ymin := min(ymin,ypt) ;
    ymax := max(ymax,ypt) ;
    od:
    Lse := [op(Lse),op(Lnew)] ;
    print(nops(Lse)) ;
  • Mathematica
    Join[{0},Map[Function[Apply[Plus,Flatten[ #1]]],CellularAutomaton[{686,{2,{{0,2,0},{2,1,2},{0,2,0}}},{1,1}},{{{1}},0},200]]] (* Nadia Heninger and N. J. A. Sloane, Aug 11 2009; modified by Paolo Xausa, Aug 12 2022 to include the a(0) term *)
    ArrayPlot /@ CellularAutomaton[{686, {2, {{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}}, {1, 1}}, {{{1}}, 0}, 16] (* N. J. A. Sloane, Nov 08 2014 *)
    A147562list[nmax_]:=Accumulate[Join[{0,1},4*3^(DigitCount[Range[nmax-1],2,1]-1)]];A147562list[100] (* Paolo Xausa, May 21 2023 *)
  • PARI
    a(n) = if (n, 1 + 4*sum(k=1, n-1, 3^(hammingweight(k)-1)), 0); \\ Michel Marcus, Jul 05 2022

Formula

a(n) = 1 + 4*Sum_{k=1..n-1} 3^(wt(k)-1) for n>1, where wt() = A000120(). [Corrected by Paolo Xausa, Aug 12 2022]
For asymptotics see the discussion in the comments in A006046. - N. J. A. Sloane, Mar 11 2021
From Omar E. Pol, Mar 13 2011: (Start)
a(n) = 2*A151917(n) - 1, for n >= 1.
a(n) = 1 + 4*A151920(n-2), for n >= 2.
(End)
It appears that a(n) = A162795(n) = A169707(n), if n is a member of A048645, otherwise a(n) < A162795(n) < A169707(n). - Omar E. Pol, Feb 20 2015
It appears that a(n) = A151920(2n-2), n >= 1. - Omar E. Pol, Mar 06 2015
It appears that a(n) = (A130665(2n-1) - 1)/3, n >= 1. - Omar E. Pol, Mar 07 2015
a(n) = 1 + 4*(A130665(n-1) - 1)/3, n >= 1. Omar E. Pol, Mar 07 2015
a(n) = A323650(2n)/3. - Omar E. Pol, Mar 04 2019

Extensions

Offset and initial terms changed by N. J. A. Sloane, Jun 07 2009
Numbers in the comment adapted to the offset by R. J. Mathar, Mar 03 2010

A006046 Total number of odd entries in first n rows of Pascal's triangle: a(0) = 0, a(1) = 1, a(2k) = 3*a(k), a(2k+1) = 2*a(k) + a(k+1). a(n) = Sum_{i=0..n-1} 2^wt(i).

Original entry on oeis.org

0, 1, 3, 5, 9, 11, 15, 19, 27, 29, 33, 37, 45, 49, 57, 65, 81, 83, 87, 91, 99, 103, 111, 119, 135, 139, 147, 155, 171, 179, 195, 211, 243, 245, 249, 253, 261, 265, 273, 281, 297, 301, 309, 317, 333, 341, 357, 373, 405, 409, 417, 425, 441, 449, 465, 481, 513, 521
Offset: 0

Views

Author

Keywords

Comments

The graph has a blancmange or Takagi appearance. For the asymptotics, see the references by Flajolet with "Mellin" in the title. - N. J. A. Sloane, Mar 11 2021
The following alternative construction of this sequence is due to Thomas Nordhaus, Oct 31 2000: For each n >= 0 let f_n be the piecewise linear function given by the points (k /(2^n), a(k) / 3^n), k = 0, 1, ..., 2^n. f_n is a monotonic map from the interval [0,1] into itself, f_n(0) = 0, f_n(1) = 1. This sequence of functions converges uniformly. But the limiting function is not differentiable on a dense subset of this interval.
I submitted a problem to the Amer. Math. Monthly about an infinite family of non-convex sequences that solve a recurrence that involves minimization: a(1) = 1; a(n) = max { ua(k) + a(n-k) | 1 <= k <= n/2 }, for n > 1; here u is any real-valued constant >= 1. The case u=2 gives the present sequence. Cf. A130665 - A130667. - Don Knuth, Jun 18 2007
a(n) = sum of (n-1)-th row terms of triangle A166556. - Gary W. Adamson, Oct 17 2009
From Gary W. Adamson, Dec 06 2009: (Start)
Let M = an infinite lower triangular matrix with (1, 3, 2, 0, 0, 0, ...) in every column shifted down twice:
1;
3;
2; 1;
0, 3;
0, 2, 1;
0, 0, 3;
0, 0, 2, 1;
0, 0, 0, 3;
0, 0, 0, 2, 1;
...
This sequence starting with "1" = lim_{n->infinity} M^n, the left-shifted vector considered as a sequence. (End)
a(n) is also the sum of all entries in rows 0 to n of Sierpiński's triangle A047999. - Reinhard Zumkeller, Apr 09 2012
The production matrix of Dec 06 2009 is equivalent to the following: Let p(x) = (1 + 3x + 2x^2). The sequence = P(x) * p(x^2) * p(x^4) * p(x^8) * .... The sequence divided by its aerated variant = (1, 3, 2, 0, 0, 0, ...). - Gary W. Adamson, Aug 26 2016
Also the total number of ON cells, rows 1 through n, for cellular automaton Rule 90 (Cf. A001316, A038183, also Mathworld Link). - Bradley Klee, Dec 22 2018

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 2.16.
  • Flajolet, Philippe, and Mordecai Golin. "Mellin transforms and asymptotics." Acta Informatica 31.7 (1994): 673-696.
  • Flajolet, Philippe, Mireille Régnier, and Robert Sedgewick. "Some uses of the Mellin integral transform in the analysis of algorithms." in Combinatorial algorithms on words. Springer, 1985. 241-254.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Partial sums of A001316.
See A130665 for Sum 3^wt(n).
a(n) = A074330(n-1) + 1 for n >= 2. A080978(n) = 2*a(n) + 1. Cf. A080263.
Sequences of form a(n) = r*a(ceiling(n/2)) + s*a(floor(n/2)), a(1)=1, for (r,s) = (1,1), (1,2), (2,1), (1,3), (2,2), (3,1), (1,4), (2,3), (3,2), (4,1): A000027, A006046, A064194, A130665, A073121, A268524, A116520, A268525, A268526, A268527.

Programs

  • Haskell
    a006046 = sum . concat . (`take` a047999_tabl)
    -- Reinhard Zumkeller, Apr 09 2012
    
  • Magma
    [0] cat [n le 1 select 1 else 2*Self(Floor(n/2)) + Self(Floor(Ceiling(n/2))): n in [1..60]]; // Vincenzo Librandi, Aug 30 2016
  • Maple
    f:=proc(n) option remember;
    if n <= 1 then n elif n mod 2 = 0 then 3*f(n/2)
    else 2*f((n-1)/2)+f((n+1)/2); fi; end;
    [seq(f(n),n=0..130)]; # N. J. A. Sloane, Jul 29 2014
  • Mathematica
    f[n_] := Sum[ Mod[ Binomial[n, k], 2], {k, 0, n} ]; Table[ Sum[ f[k], {k, 0, n} ], {n, 0, 100} ]
    Join[{0},Accumulate[Count[#,?OddQ]&/@Table[Binomial[n,k],{n,0,60},{k,0,n}]]] (* _Harvey P. Dale, Dec 10 2014 *)
    FoldList[Plus, 0, Total /@ CellularAutomaton[90, Join[Table[0, {#}], {1}, Table[0, {#}]], #]][[2 ;; -1]] &@50 (* Bradley Klee, Dec 23 2018 *)
    Join[{0}, Accumulate[2^DigitCount[Range[0, 127], 2, 1]]] (* Paolo Xausa, Oct 24 2024 *)
    Join[{0}, Accumulate[2^Nest[Join[#, #+1]&, {0}, 7]]] (* Paolo Xausa, Oct 24 2024, after IWABUCHI Yu(u)ki in A000120 *)
  • PARI
    A006046(n)={ n<2 & return(n); A006046(n\2)*3+if(n%2,1<M. F. Hasler, May 03 2009
    
  • PARI
    a(n) = if(!n, 0, my(r=0, t=1); forstep(i=logint(n, 2), 0, -1, r*=3; if(bittest(n, i), r+=t; t*=2)); r); \\ Ruud H.G. van Tol, Jul 06 2024
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A006046(n):return n if n<=1 else 2*A006046((n-1)//2)+A006046((n+1)//2)if n%2 else 3*A006046(n//2) # Guillermo Hernández, Dec 31 2023
    
  • Python
    from math import prod
    def A006046(n):
        d = list(map(lambda x:int(x)+1,bin(n)[:1:-1]))
        return sum((b-1)*prod(d[a:])*3**a for a, b in enumerate(d))>>1 # Chai Wah Wu, Aug 13 2025
    

Formula

a(n) = Sum_{k=0..n-1} 2^A000120(k). - Paul Barry, Jan 05 2005; simplified by N. J. A. Sloane, Apr 05 2014
For asymptotics see Stolarsky (1977). - N. J. A. Sloane, Apr 05 2014
a(n) = a(n-1) + A001316(n-1). a(2^n) = 3^n. - Henry Bottomley, Apr 05 2001
a(n) = n^(log_2(3))*G(log_2(n)) where G(x) is a function of period 1 defined by its Fourier series. - Benoit Cloitre, Aug 16 2002; formula modified by S. R. Finch, Dec 31 2007
G.f.: (x/(1-x))*Product_{k>=0} (1 + 2*x^2^k). - Ralf Stephan, Jun 01 2003; corrected by Herbert S. Wilf, Jun 16 2005
a(1) = 1, a(n) = 2*a(floor(n/2)) + a(ceiling(n/2)).
a(n) = 3*a(floor(n/2)) + (n mod 2)*2^A000120(n-1). - M. F. Hasler, May 03 2009
a(n) = Sum_{k=0..floor(log_2(n))} 2^k * A360189(n-1,k). - Alois P. Heinz, Mar 06 2023

Extensions

More terms from James Sellers, Aug 21 2000
Definition expanded by N. J. A. Sloane, Feb 16 2016

A048883 a(n) = 3^wt(n), where wt(n) = A000120(n).

Original entry on oeis.org

1, 3, 3, 9, 3, 9, 9, 27, 3, 9, 9, 27, 9, 27, 27, 81, 3, 9, 9, 27, 9, 27, 27, 81, 9, 27, 27, 81, 27, 81, 81, 243, 3, 9, 9, 27, 9, 27, 27, 81, 9, 27, 27, 81, 27, 81, 81, 243, 9, 27, 27, 81, 27, 81, 81, 243, 27, 81, 81, 243, 81, 243, 243, 729, 3, 9, 9, 27, 9, 27, 27, 81, 9, 27, 27, 81, 27, 81
Offset: 0

Views

Author

Keywords

Comments

Or, a(n)=number of 1's ("live" cells) at stage n of a 2-dimensional cellular automata evolving by the rule: 1 if NE+NW+S=1, else 0.
This is the odd-rule cellular automaton defined by OddRule 013 (see Ekhad-Sloane-Zeilberger "Odd-Rule Cellular Automata on the Square Grid" link). - N. J. A. Sloane, Feb 25 2015
Or, start with S=[1]; replace S by [S, 3*S]; repeat ad infinitum.
Fixed point of the morphism 1 -> 13, 3 -> 39, 9 -> 9(27), ... = 3^k -> 3^k 3^(k+1), ... starting from a(0) = 1; 1 -> 13 -> 1339 -> = 1339399(27) -> 1339399(27)399(27)9(27)(27)(81) -> ..., . - Robert G. Wilson v, Jan 24 2006
Equals row sums of triangle A166453 (the square of Sierpiński's gasket, A047999). - Gary W. Adamson, Oct 13 2009
First bisection of A169697=1,5,3,19,3,. a(2n+2)+a(2n+3)=12,12,36,=12*A147610 ? Distribution of terms (in A000244): A011782=1,A000079 for first array, A000079 for second. - Paul Curtz, Apr 20 2010
a(A000225(n)) = A000244(n) and a(m) != A000244(n) for m < A000225(n). - Reinhard Zumkeller, Nov 14 2011
This sequence pertains to phenotype Punnett square mathematics. Start with X=1. Each hybrid cross involves the equation X:3X. Therefore, the ratio in the first (mono) hybrid cross is X=1:3X=3(1) or 3; or 3:1. When you move up to the next hybridization level, replace the previous cross ratio with X. X now represents 2 numbers-1:3. Therefore, the ratio in the second (di) hybrid cross is X=(1:3):3X=[3(1):3(3)] or (3:9). Put it together and you get 1:3:3:9. Each time you move up a hybridization level, replace the previous ratio with X, and use the same equation-X:3X to get its ratio. - John Michael Feuk, Dec 10 2011
Number of odd values in the n-th layer of Pascal's tetrahedron (see A268240). - Caden Le, Mar 03 2025
a(x*y) <= a(x)^A000120(y). - Joe Amos, Mar 28 2025

Examples

			From _Omar E. Pol_, Jun 07 2009: (Start)
Triangle begins:
  1;
  3;
  3,9;
  3,9,9,27;
  3,9,9,27,9,27,27,81;
  3,9,9,27,9,27,27,81,9,27,27,81,27,81,81,243;
  3,9,9,27,9,27,27,81,9,27,27,81,27,81,81,243,9,27,27,81,27,81,81,243,27,...
Or
  1;
  3,3;
  9,3,9,9;
  27,3,9,9,27,9,27,27;
  81,3,9,9,27,9,27,27,81,9,27,27,81,27,81,81;
  243,3,9,9,27,9,27,27,81,9,27,27,81,27,81,81,243,9,27,27,81,27,81,81,243,27...
(End)
		

Crossrefs

For generating functions Product_{k>=0} (1+a*x^(b^k)) for the following values of (a,b) see: (1,2) A000012 and A000027, (1,3) A039966 and A005836, (1,4) A151666 and A000695, (1,5) A151667 and A033042, (2,2) A001316, (2,3) A151668, (2,4) A151669, (2,5) A151670, (3,2) A048883, (3,3) A117940, (3,4) A151665, (3,5) A151671, (4,2) A102376, (4,3) A151672, (4,4) A151673, (4,5) A151674.
A generalization of A001316. Cf. A102376.
Partial sums give A130665. - David Applegate, Jun 11 2009

Programs

  • Haskell
    a048883 = a000244 . a000120  -- Reinhard Zumkeller, Nov 14 2011
  • Mathematica
    Nest[ Join[#, 3#] &, {1}, 6] (* Robert G. Wilson v, Jan 24 2006 and modified Jul 27 2014*)
    a[n_] := 3^DigitCount[n, 2, 1]; Array[a, 80, 0] (* Jean-François Alcover, Nov 15 2017 *)
  • PARI
    a(n)=n=binary(n);3^sum(i=1,#n,n[i])
    

Formula

a(n) = Product_{k=0..log_2(n)} 3^b(n,k), where b(n,k) = coefficient of 2^k in binary expansion of n (offset 0). - Paul D. Hanna
a(n) = 3*a(n/2) if n is even, otherwise a(n) = a((n+1)/2).
G.f.: Product_{k>=0} (1+3*x^(2^k)). The generalization k^A000120 has generating function (1 + kx)*(1 + kx^2)*(1 + kx^4)*...
a(n+1) = Sum_{i=0..n} (binomial(n, i) mod 2) * Sum_{j=0..i} (binomial(i, j) mod 2). - Benoit Cloitre, Nov 16 2003
a(0)=1, a(n) = 3*a(n-A053644(n)) for n > 0. - Joe Slater, Jan 31 2016
G.f. A(x) satisfies: A(x) = (1 + 3*x) * A(x^2). - Ilya Gutkovskiy, Jul 09 2019

Extensions

Corrected by Ralf Stephan, Jun 19 2003
Entry revised by N. J. A. Sloane, May 30 2009
Offset changed to 0, Jun 11 2009

A116520 a(0) = 0, a(1) = 1; a(n) = max { 4*a(k) + a(n-k) | 1 <= k <= n/2 }, for n > 1.

Original entry on oeis.org

0, 1, 5, 9, 25, 29, 45, 61, 125, 129, 145, 161, 225, 241, 305, 369, 625, 629, 645, 661, 725, 741, 805, 869, 1125, 1141, 1205, 1269, 1525, 1589, 1845, 2101, 3125, 3129, 3145, 3161, 3225, 3241, 3305, 3369, 3625, 3641, 3705, 3769, 4025, 4089, 4345, 4601, 5625
Offset: 0

Views

Author

Roger L. Bagula, Mar 15 2006

Keywords

Comments

Equivalently, a(n) = r*a(ceiling(n/2)) + s*a(floor(n/2)), a(0)=0, a(1)=1, for (r,s) = (1,4). - N. J. A. Sloane, Feb 16 2016
A 5-divide version of A084230.
Zero together with the partial sums of A102376. - Omar E. Pol, May 05 2010
Also, total number of cubic ON cells after n generations in a three-dimensional cellular automaton in which A102376(n-1) gives the number of cubic ON cells in the n-th level of the structure starting from the top. An ON cell remains ON forever. The structure looks like an irregular stepped pyramid, with n >= 1. - Omar E. Pol, Feb 13 2015
From Gary W. Adamson, Aug 27 2016: (Start)
The formula of Mar 26 2010 is equivalent to lim_{k->infinity} M^k of the following production matrix M:
1, 0, 0, 0, 0, 0, ...
5, 0, 0, 0, 0, 0, ...
4, 1, 0, 0, 0, 0, ...
0, 5, 0, 0, 0, 0, ...
0, 4, 1, 0, 0, 0, ...
0, 0, 5, 0, 0, 0, ...
0, 0, 4, 1, 0, 0, ...
0, 0, 0, 5, 0, 0, ...
...
The sequence with offset 1 divided by its aerated variant is (1, 5, 4, 0, 0, 0, ...). (End)

Crossrefs

Sequences of the form a(n) = r*a(ceiling(n/2)) + s*a(floor(n/2)), a(1)=1, for (r,s) = (1,1), (1,2), (2,1), (1,3), (2,2), (3,1), (1,4), (2,3), (3,2), (4,1): A000027, A006046, A064194, A130665, A073121, A268524, A116520, A268525, A268526, A268527.

Programs

  • Haskell
    import Data.List (transpose)
    a116520 n = a116520_list !! n
    a116520_list = 0 : zs where
       zs = 1 : (concat $ transpose
                          [zipWith (+) vs zs, zipWith (+) vs $ tail zs])
          where vs = map (* 4) zs
    -- Reinhard Zumkeller, Apr 18 2012
  • Maple
    a:=proc(n) if n=0 then 0 elif n=1 then 1 elif n mod 2 = 0 then 5*a(n/2) else 4*a((n-1)/2)+a((n+1)/2) fi end: seq(a(n),n=0..52);
  • Mathematica
    b[0] := 0 b[1] := 1 b[n_?EvenQ] := b[n] = 5*b[n/2] b[n_?OddQ] := b[n] = 4*b[(n - 1)/2] + b[(n + 1)/2] a = Table[b[n], {n, 1, 25}]

Formula

a(0) = 1, a(1) = 1; thereafter a(2n) = 5a(n) and a(2n+1) = 4a(n) + a(n+1).
Let r(x) = (1 + 5x + 4x^2). Then (1 + 5x + 9x^2 + 25x^3 + ...) = r(x) * r(x^2) * r(x^4) * r(x^8) * ... . - Gary W. Adamson, Mar 26 2010
a(n) = Sum_{k=0..n-1} 4^wt(k), where wt = A000120. - Mike Warburton, Mar 14 2019
a(n) = Sum_{k=0..floor(log_2(n))} 4^k*A360189(n-1,k). - Alois P. Heinz, Mar 06 2023

Extensions

Edited by N. J. A. Sloane, Apr 16 2006, Jul 02 2008

A160410 Number of "ON" cells at n-th stage in simple 2-dimensional cellular automaton (see Comments for precise definition).

Original entry on oeis.org

0, 4, 16, 28, 64, 76, 112, 148, 256, 268, 304, 340, 448, 484, 592, 700, 1024, 1036, 1072, 1108, 1216, 1252, 1360, 1468, 1792, 1828, 1936, 2044, 2368, 2476, 2800, 3124, 4096, 4108, 4144, 4180, 4288, 4324, 4432, 4540, 4864, 4900, 5008, 5116, 5440, 5548, 5872, 6196
Offset: 0

Views

Author

Omar E. Pol, May 20 2009

Keywords

Comments

On the infinite square grid, we consider cells to be the squares, and we start at round 0 with all cells in the OFF state, so a(0) = 0.
At round 1, we turn ON four cells, forming a square.
The rule for n > 1: A cell in turned ON iff exactly one of its four vertices is a corner vertex of the set of ON cells. So in each generation every exposed vertex turns on three new cells.
Therefore:
At Round 2, we turn ON twelve cells around the square.
At round 3, we turn ON twelve other cells. Three cells around of every corner of the square.
And so on.
For the first differences see the entry A161411.
Shows a fractal behavior similar to the toothpick sequence A139250.
A very similar sequence is A160414, which uses the same rule but with a(1) = 1, not 4.
When n=2^k then the polygon formed by ON cells is a square with side length 2^(k+1).
a(n) is also the area of the figure of A147562 after n generations if A147562 is drawn as overlapping squares. - Omar E. Pol, Nov 08 2009
From Omar E. Pol, Mar 28 2011: (Start)
Also, toothpick sequence starting with four toothpicks centered at (0,0) as a cross.
Rule: Each exposed endpoint of the toothpicks of the old generation must be touched by the endpoints of three toothpicks of new generation. (Note that these three toothpicks looks like a T-toothpick, see A160172.)
The sequence gives the number of toothpicks after n stages. A161411 gives the number of toothpicks added at the n-th stage.
(End)

Examples

			From _Omar E. Pol_, Sep 24 2015: (Start)
With the positive terms written as an irregular triangle in which the row lengths are the terms of A011782 the sequence begins:
    4;
   16;
   28,  64;
   76, 112, 148, 256;
  268, 304, 340, 448, 484, 592, 700, 1024;
  ...
Right border gives the elements of A000302 greater than 1.
This triangle T(n,k) shares with the triangle A256534 the terms of the column k, if k is a power of 2, for example, both triangles share the following terms: 4, 16, 28, 64, 76, 112, 256, 268, 304, 448, 1024, etc.
.
Illustration of initial terms, for n = 1..10:
.       _ _ _ _                         _ _ _ _
.      |  _ _  |                       |  _ _  |
.      | |  _|_|_ _ _ _ _ _ _ _ _ _ _ _|_|_  | |
.      | |_|  _ _     _ _     _ _     _ _  |_| |
.      |_ _| |  _|_ _|_  |   |  _|_ _|_  | |_ _|
.          | |_|  _ _  |_|   |_|  _ _  |_| |
.          |   | |  _|_|_ _ _ _|_|_  | |   |
.          |  _| |_|  _ _     _ _  |_| |_  |
.          | | |_ _| |  _|_ _|_  | |_ _| | |
.          | |_ _| | |_|  _ _  |_| | |_ _| |
.          |       |   | |   | |   |       |
.          |  _ _  |  _| |_ _| |_  |  _ _  |
.          | |  _|_| | |_ _ _ _| | |_|_  | |
.          | |_|  _| |_ _|   |_ _| |_  |_| |
.          |   | | |_ _ _ _ _ _ _ _| | |   |
.          |  _| |_ _| |_     _| |_ _| |_  |
.       _ _| | |_ _ _ _| |   | |_ _ _ _| | |_ _
.      |  _| |_ _|   |_ _|   |_ _|   |_ _| |_  |
.      | | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | |
.      | |_ _| |                       | |_ _| |
.      |_ _ _ _|                       |_ _ _ _|
.
After 10 generations there are 304 ON cells, so a(10) = 304.
(End)
		

Crossrefs

Programs

  • Mathematica
    RasterGraphics[state_?MatrixQ,colors_Integer:2,opts___]:=
    Graphics[Raster[Reverse[1-state/(colors -1)]],
    AspectRatio ->(AspectRatio/.{opts}/.AspectRatio ->Automatic),
    Frame ->True, FrameTicks ->None, GridLines ->None];
    rule=1340761804646523638425234105559798690663900360577570370705802859623\
    705267234688669629039040624964794287326910250673678735142700520276191850\
    5902735959769690
    Show[GraphicsArray[Map[RasterGraphics,CellularAutomaton[{rule, {2,
    {{4,2,1}, {32,16,8}, {256,128,64}}}, {1,1}}, {{{1,1}, {1,1}}, 0}, 9,-10]]]];
    ca=CellularAutomaton[{rule,{2,{{4,2,1},{32,16,8},{256,128,64}}},{1,
    1}},{{{1,1},{1,1}},0},99,-100];
    Table[Total[ca[[i]],2],{i,1,Length[ca]}]
    (* John W. Layman, Sep 01 2009; Sep 02 2009 *)
    a[n_] := 4*Sum[3^DigitCount[k, 2, 1], {k, 0, n-1}];
    Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Nov 17 2017, after N. J. A. Sloane *)
  • PARI
    A160410(n)=sum(i=0,n-1,3^norml2(binary(i)))<<2 \\ M. F. Hasler, Dec 04 2012

Formula

Equals 4*A130665. This provides an explicit formula for a(n). - N. J. A. Sloane, Jul 13 2009
a(2^k) = (2*(2^k))^2 for k>=0.

Extensions

Edited by David Applegate and N. J. A. Sloane, Jul 13 2009

A151920 a(n) = (Sum_{i=1..n+1} 3^wt(i))/3, where wt() = A000120().

Original entry on oeis.org

1, 2, 5, 6, 9, 12, 21, 22, 25, 28, 37, 40, 49, 58, 85, 86, 89, 92, 101, 104, 113, 122, 149, 152, 161, 170, 197, 206, 233, 260, 341, 342, 345, 348, 357, 360, 369, 378, 405, 408, 417, 426, 453, 462, 489, 516, 597, 600, 609, 618, 645, 654, 681, 708, 789, 798, 825, 852, 933, 960
Offset: 0

Views

Author

N. J. A. Sloane, Aug 05 2009, Aug 06 2009

Keywords

Comments

Partial sums of A147610 (but with offset changed to 0).
It appears that the first bisection gives the positive terms of A147562. - Omar E. Pol, Mar 07 2015

Examples

			n=3: (3^1+3^1+3^2+3^1)/3 = 18/3 = 6.
n=18: the binary expansion of 18+1 is 10011, i.e., 19 = 2^4 + 2^1 + 2^0.
The exponents of these powers of 2 (4, 1 and 0) reoccur as exponents in the powers of 4: a(19) = 3^0 * [(4^4 - 1) / 3 + 1] + 3^1 * [(4^1 - 1) / 3 + 1] + 3^2 * [(4^0 - 1)/3 + 1] = 1 * 86 + 3 * 2 + 9 * 1 = 101. - _David A. Corneth_, Mar 21 2015
		

Crossrefs

Programs

  • Mathematica
    t = Nest[Join[#, # + 1] &, {0}, 14]; Table[Sum[3^t[[i + 1]], {i, 1, n}]/3, {n, 60}] (* Michael De Vlieger, Mar 21 2015 *)
  • PARI
    a(n) = sum(i=1, n+1, 3^hammingweight(i))/3; \\ Michel Marcus, Mar 07 2015
    
  • PARI
    a(n)={b=binary(n+1);t=#b;e=-1;sum(i=1,#b,e+=(b[i]==1);(b[i]==1)*3^e*((4^(#b-i)-1)/3+1))} \\ David A. Corneth, Mar 21 2015

Formula

a(n) = (A147562(n+2) - 1)/4 = (A151917(n+2) - 1)/2. - Omar E. Pol, Mar 13 2011
a(n) = (A130665(n+1) - 1)/3. - Omar E. Pol, Mar 07 2015
a(n) = a(n-1) + 3^A000120(n+1)/3. - David A. Corneth, Mar 21 2015

A360189 Triangle T(n,k), n>=0, 0<=k<=floor(log_2(n+1)), read by rows: T(n,k) = number of nonnegative integers <= n having binary weight k.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 1, 3, 1, 1, 3, 2, 1, 3, 3, 1, 3, 3, 1, 1, 4, 3, 1, 1, 4, 4, 1, 1, 4, 5, 1, 1, 4, 5, 2, 1, 4, 6, 2, 1, 4, 6, 3, 1, 4, 6, 4, 1, 4, 6, 4, 1, 1, 5, 6, 4, 1, 1, 5, 7, 4, 1, 1, 5, 8, 4, 1, 1, 5, 8, 5, 1, 1, 5, 9, 5, 1, 1, 5, 9, 6, 1, 1, 5, 9, 7, 1
Offset: 0

Views

Author

Alois P. Heinz, Mar 04 2023

Keywords

Comments

T(n,k) is defined for all n >= 0 and k >= 0. Terms that are not in the triangle are zero.

Examples

			T(6,2) = 3: 3, 5, 6, or in binary: 11_2, 101_2, 110_2.
T(15,3) = 4: 7, 11, 13, 14, or in binary: 111_2, 1011_2, 1101_2, 1110_2.
Triangle T(n,k) begins:
  1;
  1, 1;
  1, 2;
  1, 2, 1;
  1, 3, 1;
  1, 3, 2;
  1, 3, 3;
  1, 3, 3, 1;
  1, 4, 3, 1;
  1, 4, 4, 1;
  1, 4, 5, 1;
  1, 4, 5, 2;
  1, 4, 6, 2;
  1, 4, 6, 3;
  1, 4, 6, 4;
  1, 4, 6, 4, 1;
  ...
		

Crossrefs

Columns k=0-2 give: A000012, A029837(n+1) = A113473(n) for n>0, A340068(n+1).
Last elements of rows give A090996(n+1).

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<0, 0,
          b(n-1)+x^add(i, i=Bits[Split](n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n)):
    seq(T(n), n=0..23);
  • PARI
    T(n,k) = my(v1); v1 = Vecrev(binary(n+1)); v1 = Vecrev(select(x->(x>0),v1,1)); sum(j=0, min(k,#v1-1), binomial(v1[j+1]-1,k-j)) \\ Mikhail Kurkov, Nov 27 2024

Formula

T(n,k) = T(n-1,k) + [A000120(n) = k] where [] is the Iverson bracket and T(n,k) = 0 for n<0.
T(2^n-1,k) = A007318(n,k) = binomial(n,k).
T(n,floor(log_2(n+1))) = A090996(n+1).
Sum_{k>=0} T(n,k) = n+1.
Sum_{k>=0} k * T(n,k) = A000788(n).
Sum_{k>=0} k^2 * T(n,k) = A231500(n).
Sum_{k>=0} k^3 * T(n,k) = A231501(n).
Sum_{k>=0} k^4 * T(n,k) = A231502(n).
Sum_{k>=0} 2^k * T(n,k) = A006046(n+1).
Sum_{k>=0} 3^k * T(n,k) = A130665(n).
Sum_{k>=0} 4^k * T(n,k) = A116520(n+1).
Sum_{k>=0} 5^k * T(n,k) = A130667(n+1).
Sum_{k>=0} 6^k * T(n,k) = A116522(n+1).
Sum_{k>=0} 7^k * T(n,k) = A161342(n+1).
Sum_{k>=0} 8^k * T(n,k) = A116526(n+1).
Sum_{k>=0} 10^k * T(n,k) = A116525(n+1).
Sum_{k>=0} n^k * T(n,k) = A361257(n).
T(n,k) = Sum_{j=0..min(k, A000120(n+1)-1)} binomial(A272020(n+1,j+1)-1,k-j) for n >= 0, k >= 0 (see Peter J. Taylor link). - Mikhail Kurkov, Nov 27 2024

A064194 a(2n) = 3*a(n), a(2n+1) = 2*a(n+1)+a(n), with a(1) = 1.

Original entry on oeis.org

1, 3, 7, 9, 17, 21, 25, 27, 43, 51, 59, 63, 71, 75, 79, 81, 113, 129, 145, 153, 169, 177, 185, 189, 205, 213, 221, 225, 233, 237, 241, 243, 307, 339, 371, 387, 419, 435, 451, 459, 491, 507, 523, 531, 547, 555, 563, 567, 599, 615, 631, 639, 655, 663, 671, 675
Offset: 1

Views

Author

Guillaume Hanrot and Paul Zimmermann, Sep 21 2001

Keywords

Comments

Number of ring multiplications needed to multiply two degree-n polynomials using Karatsuba's algorithm.
Number of gates in the AND/OR problem (see Chang/Tsai reference).
a(n) is also the number of odd elements in the n X n symmetric Pascal matrix. - Stefano Spezia, Nov 14 2022

References

  • A. A. Karatsuba and Y. P. Ofman, Multiplication of multiplace numbers by automata. Dokl. Akad. Nauk SSSR 145, 2, 293-294 (1962).

Crossrefs

Cf. A023416, A267584, A047999 (Sierpinski triangle).
Cf. also A268514.
Sequences of form a(n)=r*a(ceil(n/2))+s*a(floor(n/2)), a(1)=1, for (r,s) = (1,1), (1,2), (2,1), (1,3), (2,2), (3,1), (1,4), (2,3), (3,2), (4,1): A000027, A006046, A064194, A130665, A073121, A268524, A116520, A268525, A268526, A268527.

Programs

  • Magma
    [n le 1 select 1 else Self(Floor(n/2)) + 2*Self(Ceiling(n/2)): n in [1..60]]; // Vincenzo Librandi, Aug 30 2016
  • Maple
    f:=proc(n) option remember; if n=1 then 1 elif n mod 2 = 0 then 3*f(n/2) else 2*f((n+1)/2)+f((n-1)/2); fi; end; [seq(f(n),n=1..60)]; # N. J. A. Sloane, Jan 17 2016
  • Mathematica
    a[n_] := a[n] = If[EvenQ[n], 3 a[n/2], 2 a[# + 1] + a[#] &[(n - 1)/2]]; a[1] = 1; Array[a, 56] (* Michael De Vlieger, Oct 29 2022 *)
  • PARI
    a(n) = sum(i=0, n-1, sum(j=0, n-1, binomial(i+j, i) % 2)); \\ Michel Marcus, Aug 25 2013
    

Formula

Partial sums of the sequence { b(1)=1, b(n)=2^(e0(n-1)+1) } (essentially A267584), where e0(n)=A023416(n) is the number of zeros in the binary expansion of n. [Chang/Tsai] - Ralf Stephan, Jul 29 2003
a(1) = 1, a(n) = a(floor(n/2)) + 2*a(ceiling(n/2)), n > 1.
a(n+1) = Sum_{0<=i, j<=n} (binomial(i+j, i) mod 2). - Benoit Cloitre, Mar 07 2005
In particular, a(2^k)=3^k, a(3*2^k)=7*3^k. - N. J. A. Sloane, Jan 18 2016
a(n) = 2*A268514(n-1) + 1. - N. J. A. Sloane, Feb 07 2016

Extensions

Edited with clearer definition by N. J. A. Sloane, Jan 18 2016
Showing 1-10 of 27 results. Next