cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A001222 Number of prime divisors of n counted with multiplicity (also called big omega of n, bigomega(n) or Omega(n)).

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 3, 3, 1, 3, 1, 5, 2, 2, 2, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 5, 2, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 4, 1, 2, 3, 6, 2, 3, 1, 3, 2, 3, 1, 5, 1, 2, 3, 3, 2, 3, 1, 5, 4, 2, 1, 4, 2, 2, 2, 4, 1, 4, 2, 3, 2, 2, 2, 6, 1, 3, 3, 4, 1, 3, 1, 4, 3, 2, 1, 5, 1, 3, 2
Offset: 1

Views

Author

Keywords

Comments

Maximal number of terms in any factorization of n.
Number of prime powers (not including 1) that divide n.
Sum of exponents in prime-power factorization of n. - Daniel Forgues, Mar 29 2009
Sum_{d|n} 2^(-A001221(d) - a(n/d)) = Sum_{d|n} 2^(-a(d) - A001221(n/d)) = 1 (see Dressler and van de Lune link). - Michel Marcus, Dec 18 2012
Row sums in A067255. - Reinhard Zumkeller, Jun 11 2013
Conjecture: Let f(n) = (x+y)^a(n), and g(n) = x^a(n), and h(n) = (x+y)^A046660(n) * y^A001221(n) with x, y complex numbers and 0^0 = 1. Then f(n) = Sum_{d|n} g(d)*h(n/d). This is proved for x = 1-y (see Dressler and van de Lune link). - Werner Schulte, Feb 10 2018
Let r, s be some fixed integers. Then we have:
(1) The sequence b(n) = Dirichlet convolution of r^bigomega(n) and s^bigomega(n) is multiplicative with b(p^e) = (r^(e+1)-s^(e+1))/(r-s) for prime p and e >= 0. The case r = s leads to b(p^e) = (e+1)*r^e.
(2) The sequence c(n) = Dirichlet convolution of r^bigomega(n) and mu(n)*s^bigomega(n) is multiplicative with c(p^e) = (r-s)*r^(e-1) and c(1) = 1 for prime p and e > 0 where mu(n) = A008683(n). - Werner Schulte, Feb 20 2019
a(n) is also the length of the composition series for every solvable group of order n. - Miles Englezou, Apr 25 2024

Examples

			16=2^4, so a(16)=4; 18=2*3^2, so a(18)=3.
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 119, #12, omega(n).
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, pp. 48-57.
  • M. Kac, Statistical Independence in Probability, Analysis and Number Theory, Carus Monograph 12, Math. Assoc. Amer., 1959, see p. 64.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 92.

Crossrefs

Cf. A001221 (omega, primes counted without multiplicity), A008836 (Liouville's lambda, equal to (-1)^a(n)), A046660, A144494, A074946, A134334.
Bisections give A091304 and A073093. A086436 is essentially the same sequence. Cf. A022559 (partial sums), A066829 (parity), A092248 (parity of omega).
Sequences listing n such that a(n) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), A069274 (r = 13), A069275 (r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20). - Jason Kimberley, Oct 02 2011
Cf. A079149 (primes adj. to integers with at most 2 prime factors, a(n)<=2).
Cf. A027748 (without repetition).
Cf. A000010.

Programs

  • GAP
    Concatenation([0],List([2..150],n->Length(Factors(n)))); # Muniru A Asiru, Feb 21 2019
    
  • Haskell
    import Math.NumberTheory.Primes.Factorisation (factorise)
    a001222 = sum . snd . unzip . factorise
    -- Reinhard Zumkeller, Nov 28 2015
    
  • Julia
    using Nemo
    function NumberOfPrimeFactors(n; distinct=true)
        distinct && return length(factor(ZZ(n)))
        sum(e for (p, e) in factor(ZZ(n)); init=0)
    end
    println([NumberOfPrimeFactors(n, distinct=false) for n in 1:60])  # Peter Luschny, Jan 02 2024
  • Magma
    [n eq 1 select 0 else &+[p[2]: p in Factorization(n)]: n in [1..120]]; // Bruno Berselli, Nov 27 2013
    
  • Maple
    with(numtheory): seq(bigomega(n), n=1..111);
  • Mathematica
    Array[ Plus @@ Last /@ FactorInteger[ # ] &, 105]
    PrimeOmega[Range[120]] (* Harvey P. Dale, Apr 25 2011 *)
  • PARI
    vector(100,n,bigomega(n))
    
  • Python
    from sympy import primeomega
    def a(n): return primeomega(n)
    print([a(n) for n in range(1, 112)]) # Michael S. Branicky, Apr 30 2022
    
  • SageMath
    [sloane.A001222(n) for n in (1..120)] # Giuseppe Coppoletta, Jan 19 2015
    
  • SageMath
    [gp.bigomega(n) for n in range(1,131)] # G. C. Greubel, Jul 13 2024
    
  • Scheme
    (define (A001222 n) (let loop ((n n) (z 0)) (if (= 1 n) z (loop (/ n (A020639 n)) (+ 1 z)))))
    ;; Requires also A020639 for which an equally naive implementation can be found under that entry. - Antti Karttunen, Apr 12 2017
    

Formula

n = Product_(p_j^k_j) -> a(n) = Sum_(k_j).
Dirichlet g.f.: ppzeta(s)*zeta(s). Here ppzeta(s) = Sum_{p prime} Sum_{k>=1} 1/(p^k)^s. Note that ppzeta(s) = Sum_{p prime} 1/(p^s-1) and ppzeta(s) = Sum_{k>=1} primezeta(k*s). - Franklin T. Adams-Watters, Sep 11 2005
Totally additive with a(p) = 1.
a(n) = if n=1 then 0 else a(n/A020639(n)) + 1. - Reinhard Zumkeller, Feb 25 2008
a(n) = Sum_{k=1..A001221(n)} A124010(n,k). - Reinhard Zumkeller, Aug 27 2011
a(n) = A022559(n) - A022559(n-1).
G.f.: Sum_{p prime, k>=1} x^(p^k)/(1 - x^(p^k)). - Ilya Gutkovskiy, Jan 25 2017
a(n) = A091222(A091202(n)) = A000120(A156552(n)). - Antti Karttunen, circa 2004 and Mar 06 2017
a(n) >= A267116(n) >= A268387(n). - Antti Karttunen, Apr 12 2017
Sum_{k=1..n} 2^(-A001221(gcd(n,k)) - a(n/gcd(n,k)))/phi(n/gcd(n,k)) = Sum_{k=1..n} 2^(-a(gcd(n,k)) - A001221(n/gcd(n,k)))/phi(n/gcd(n,k)) = 1, where phi = A000010. - Richard L. Ollerton, May 13 2021
a(n) = a(A046523(n)) = A007814(A108951(n)) = A061395(A122111(n)) = A056239(A181819(n)) = A048675(A293442(n)). - Antti Karttunen, Apr 30 2022

Extensions

More terms from David W. Wilson

A134333 Numbers n whose number of prime factors (counted with multiplicity) is a prime factor of n.

Original entry on oeis.org

4, 6, 10, 12, 14, 18, 22, 26, 27, 30, 34, 38, 42, 45, 46, 58, 62, 63, 66, 74, 75, 78, 80, 82, 86, 94, 99, 102, 105, 106, 114, 117, 118, 120, 122, 134, 138, 142, 146, 147, 153, 158, 165, 166, 171, 174, 178, 180, 186, 194, 195, 200, 202, 206, 207, 214, 218, 222, 226
Offset: 1

Views

Author

Hieronymus Fischer, Oct 23 2007

Keywords

Examples

			a(1) = 4, since 4 has 2 prime factors and 2 is a prime factor of 4.
a(4) = 12, since 12 = 2*2*3 has 3 prime factors, and 3 is a prime factor of 12.
a(21) = 75, since 75 = 3*3*5 has 3 prime factors. and 3 is a prime factor of 75.
9 = 3*3 is not a term, since the number of prime factors (=2) is not a divisor of 9.
28 = 2*2*7 is not a term, since the number of prime factors (=3) is not a divisor of 28.
		

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Module[{d = Total[Transpose[FactorInteger[n]][[2]]]}, PrimeQ[d] && Mod[n, d] == 0]; Select[Range[2, 226], fQ] (* T. D. Noe, Apr 05 2013 *)
  • PARI
    a(n)=my(t=bigomega(n)); n%t==0 && isprime(t) \\ Charles R Greathouse IV, Sep 14 2015

Formula

a(n) << n log n/(log log n)^k for any fixed k. - Charles R Greathouse IV, Sep 14 2015

Extensions

Sequence definition corrected and examples added by Hieronymus Fischer, Apr 05 2013

A134344 Composite numbers such that the arithmetic mean of their prime factors (counted with multiplicity) is prime.

Original entry on oeis.org

4, 8, 9, 16, 20, 21, 25, 27, 32, 33, 44, 49, 57, 60, 64, 68, 69, 81, 85, 93, 105, 112, 116, 121, 125, 128, 129, 133, 145, 156, 169, 177, 180, 188, 195, 205, 212, 213, 217, 220, 231, 237, 243, 249, 253, 256, 265, 272, 275, 289, 297, 309, 332, 336, 343, 356, 361
Offset: 1

Views

Author

Hieronymus Fischer, Oct 23 2007

Keywords

Comments

Originally, the definition started with "Nonprime numbers ...". This may be misleading, since 1 is also nonprime, but has no prime factors. - Hieronymus Fischer, May 05 2013

Examples

			a(1) = 4, since 4 = 2*2 and the arithmetic mean (2+2)/2 = 2 is prime.
a(5) = 20, since 20 = 2*2*5 and the arithmetic mean (2+2+5)/3 = 3 is prime.
		

Crossrefs

Programs

  • Mathematica
    ampfQ[n_]:=PrimeQ[Mean[Flatten[Table[#[[1]],{#[[2]]}]&/@FactorInteger[ n]]]]; nn=400;Select[Complement[Range[nn],Prime[Range[ PrimePi[nn]]]], ampfQ] (* Harvey P. Dale, Nov 06 2012 *)
  • PARI
    is(n)=if(n<4,return(0)); my(f=factor(n),s=sum(i=1,#f~,f[i,1]*f[i,2])/sum(i=1,#f~,f[i,2])); (#f~>1 || f[1,2]>1) && denominator(s)==1 && isprime(s) \\ Charles R Greathouse IV, Sep 14 2015

Extensions

Definition clarified by Hieronymus Fischer, May 05 2013

A134376 Numbers whose sum of prime factors (counted with multiplicity) is not prime.

Original entry on oeis.org

1, 4, 8, 9, 14, 15, 16, 18, 20, 21, 24, 25, 26, 27, 30, 32, 33, 35, 36, 38, 39, 42, 44, 46, 49, 50, 51, 55, 57, 60, 62, 64, 65, 66, 68, 69, 70, 72, 74, 77, 78, 81, 84, 85, 86, 87, 91, 92, 93, 94, 95, 98, 100, 102, 105, 106, 110, 111, 112, 114, 115, 116, 119, 120, 121, 122
Offset: 1

Views

Author

Hieronymus Fischer, Oct 23 2007

Keywords

Comments

The first term is 1, since 1 has no prime factors and so the sum of prime factors evaluates to zero.
Conjecture: a(n) ~ n. - Charles R Greathouse IV, Apr 28 2015

Examples

			a(2) = 4, since 4 = 2*2 and 2+2 = 4 is not prime.
a(5) = 14, since 14 = 2*7 and 2+7 = 9 is not prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[150],!PrimeQ[Total[Flatten[Table[#[[1]],#[[2]]]&/@ FactorInteger[ #]]]]&] (* Harvey P. Dale, Jul 05 2021 *)
  • PARI
    sopfr(n)=my(f=factor(n)); sum(i=1,#f~,f[i,1]*f[i,2])
    is(n)=!isprime(sopfr(n)) \\ Charles R Greathouse IV, Apr 28 2015

Extensions

Edited by the author at the suggestion of T. D. Noe, May 20 2013

A074946 Positive integers n for which the sum of the prime-factorization exponents of n (bigomega(n) = A001222(n)) divides n.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 16, 17, 18, 19, 22, 23, 24, 26, 27, 29, 30, 31, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 53, 56, 58, 59, 60, 61, 62, 63, 66, 67, 71, 73, 74, 75, 78, 79, 80, 82, 83, 84, 86, 88, 89, 94, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106
Offset: 1

Views

Author

Benoit Cloitre, Oct 05 2002

Keywords

Comments

If n is prime, trivially n is in the sequence.
The asymptotic density of this sequence is 0 (Erdős and Pomerance, 1990). - Amiram Eldar, Jul 10 2020

Crossrefs

Cf. A001222, A134334 (complement).

Programs

Formula

a(n) seems to be asymptotic to c*n*log(log(n)) with 1.128 < c < 1.13.

Extensions

Revised definition from Leroy Quet, Sep 11 2008
More terms from Keenan J. A. Down, Dec 08 2016
Smaller boundary for 'c' from Keenan J. A. Down, Dec 08 2016

A185307 Numbers not divisible by the number of their distinct prime factors.

Original entry on oeis.org

1, 15, 21, 33, 35, 39, 45, 51, 55, 57, 63, 65, 69, 70, 75, 77, 85, 87, 91, 93, 95, 99, 110, 111, 115, 117, 119, 123, 129, 130, 133, 135, 140, 141, 143, 145, 147, 153, 154, 155, 159, 161, 170, 171, 175, 177, 182, 183, 185, 187, 189, 190, 201, 203, 205, 207, 209
Offset: 1

Views

Author

Keywords

Comments

The complement of A075592 (omega(n) divides n).
Though initially sparse, the sequence increases in density. There are more numbers divisible by omega(n) than not from [3,9265], but there are always more indivisible numbers thereafter.
There are 308 more numbers divisible than indivisible in the range from 1 to 2754, 2778, and 2880. This three values are the global maxima.
The asymptotic density of this sequence is 1 (Cooper and Kennedy, 1989). - Amiram Eldar, Jul 10 2020

Examples

			The distinct prime factors of 45 are 3 and 5, but 45 is not divisible by 2.
		

Crossrefs

Cf. A075592 (complement), A001221, A001222, A074946, A134334.

Programs

  • Mathematica
    Join[{1},Select[Range[2,300],Mod[#,PrimeNu[#]]!=0&]] (* Harvey P. Dale, Jun 05 2023 *)
  • PARI
    isok(n) = iferr(n % omega(n), E, 1); \\ Michel Marcus, Jul 10 2020
  • R
    library(numbers); isint<-function(x) x==as.integer(x); which(!vapply(1:500,function(n) isint(n/omega(n)),T))
    

A078177 Composite numbers with an integer arithmetic mean of all prime factors.

Original entry on oeis.org

4, 8, 9, 15, 16, 20, 21, 25, 27, 32, 33, 35, 39, 42, 44, 49, 50, 51, 55, 57, 60, 64, 65, 68, 69, 77, 78, 81, 85, 87, 91, 92, 93, 95, 105, 110, 111, 112, 114, 115, 116, 119, 121, 123, 125, 128, 129, 133, 140, 141, 143, 145, 155, 156, 159, 161, 164, 169, 170, 177, 180
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 20 2002

Keywords

Comments

That is, composite numbers such that the arithmetic mean of their prime factors (counted with multiplicity) is an integer.

Examples

			60 = 2*2*3*5: (2+2+3+5)/4 = 3, therefore 60 is a term.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[200], CompositeQ[#] && IntegerQ[Mean[Flatten[Table[#[[1]], #[[2]]]& /@ FactorInteger[#]]]]&] (* Jean-François Alcover, Aug 03 2018 *)
  • PARI
    lista(nn) = {forcomposite(n=1, nn, my(f = factor(n)); if (! (sum(k=1, #f~, f[k,1]*f[k,2]) % vecsum(f[,2])), print1(n, ", ")););} \\ Michel Marcus, Feb 22 2016

Formula

A001414(a(n)) == 0 modulo A001222(a(n)).

Extensions

Edited by N. J. A. Sloane, May 30 2008 at the suggestion of R. J. Mathar

A134335 Numbers such that the arithmetic mean of their prime factors (counted with multiplicity) is an integer, but not a prime.

Original entry on oeis.org

15, 35, 39, 42, 50, 51, 55, 65, 77, 78, 87, 91, 92, 95, 110, 111, 114, 115, 119, 123, 140, 141, 143, 155, 159, 161, 164, 170, 183, 185, 186, 187, 189, 201, 203, 204, 209, 215, 219, 221, 222, 225, 230, 235, 236, 242, 247, 258, 259, 264, 267, 284, 285, 287, 290
Offset: 1

Views

Author

Hieronymus Fischer, Oct 23 2007

Keywords

Examples

			a(1) = 15, since 15 = 3*5 and (3+5)/2 = 4 is not prime.
a(5) = 50, since 50 = 2*5*5 and (2+5+5)/3 = 4 is not prime.
		

Crossrefs

Programs

  • Mathematica
    fp[{a_,b_}]:=a*b;s={};Do[If[q=Total[fp/@FactorInteger[n]]/Total[Last/@FactorInteger[n]];IntegerQ[q]&&!PrimeQ[q],AppendTo[s,n]],{n,2,290}];s (* James C. McMahon, Apr 05 2025 *)

Extensions

Definition clarified by the author, May 06 2013

A231876 Numbers n such that omega(n)^2 (cf. A001221) divides n.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 36, 37, 40, 41, 43, 44, 47, 48, 49, 52, 53, 56, 59, 61, 64, 67, 68, 71, 72, 73, 76, 79, 80, 81, 83, 88, 89, 90, 92, 96, 97, 100, 101, 103, 104, 107, 108, 109, 112, 113, 116, 121, 124, 125, 126, 127, 128, 131, 136, 137, 139, 144, 148, 149
Offset: 1

Views

Author

N. J. A. Sloane, Nov 17 2013

Keywords

Comments

Includes all prime powers (A246655), as well as 4*A246655. - Robert Israel, Apr 25 2017

Crossrefs

Programs

  • Maple
    select(n -> n mod nops(numtheory:-factorset(n))^2 = 0, [$2..1000]); # Robert Israel, Apr 25 2017
  • Mathematica
    Select[Range[2, 500], Mod[#, PrimeNu[#]^2] == 0  &] (* G. C. Greubel, Apr 24 2017 *)
  • PARI
    isok(n) = !(n % omega(n)^2); \\ Michel Marcus, Apr 25 2017

A231877 Numbers n such that omega(n)^2 (cf. A001221) does not divide n.

Original entry on oeis.org

1, 6, 10, 14, 15, 18, 21, 22, 26, 30, 33, 34, 35, 38, 39, 42, 45, 46, 50, 51, 54, 55, 57, 58, 60, 62, 63, 65, 66, 69, 70, 74, 75, 77, 78, 82, 84, 85, 86, 87, 91, 93, 94, 95, 98, 99, 102, 105, 106, 110, 111, 114, 115, 117, 118, 119, 120, 122, 123, 129, 130, 132, 133, 134, 135, 138, 140, 141, 142, 143, 145, 146, 147, 150
Offset: 1

Views

Author

N. J. A. Sloane, Nov 17 2013

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Select[Range[2, 500], Mod[#, PrimeNu[#]^2] != 0  &]] (* G. C. Greubel, Apr 24 2017 *)
Showing 1-10 of 12 results. Next