cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A165705 Range and record values of A165704.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 15, 17, 19, 23, 29, 33, 35, 41, 47, 55, 57, 59, 71, 73, 85, 93, 99, 109, 115, 123, 147, 149, 169, 175, 185, 187, 211, 223, 235, 255, 295, 297, 299, 307, 337, 361, 373, 383, 443, 457, 477, 517, 529, 589, 591, 599, 601, 641, 683, 743, 757, 787
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 26 2009

Keywords

Comments

a(1) = A165704(0); for n>1: a(n) = A165704(A051037(n)) and a(m) < A165704(m) for m < A051037(n).

Crossrefs

A051037 5-smooth numbers, i.e., numbers whose prime divisors are all <= 5.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32, 36, 40, 45, 48, 50, 54, 60, 64, 72, 75, 80, 81, 90, 96, 100, 108, 120, 125, 128, 135, 144, 150, 160, 162, 180, 192, 200, 216, 225, 240, 243, 250, 256, 270, 288, 300, 320, 324, 360, 375, 384, 400, 405
Offset: 1

Views

Author

Keywords

Comments

Sometimes called the Hamming sequence, since Hamming asked for an efficient algorithm to generate the list, in ascending order, of all numbers of the form 2^i*3^j*5^k for i,j,k >= 0. The problem was popularized by Edsger Dijkstra.
Numbers k such that 8*k = EulerPhi(30*k). - Artur Jasinski, Nov 05 2008
Where record values greater than 1 occur in A165704: A165705(n) = A165704(a(n)). - Reinhard Zumkeller, Sep 26 2009
Also called "harmonic whole numbers", see Howard and Longair, 1982, Table I, page 121. - Hugo Pfoertner, Jul 16 2020
Also called ugly numbers, although it is not clear why. - Gus Wiseman, May 21 2021
Some woody bamboo species have extraordinarily long and stable flowering intervals that belong to this sequence. The model by Veller, Nowak & Davis justifies this observation from the evolutionary point of view. - Andrey Zabolotskiy, Jun 27 2021
Also those integers k for which, for every prime p > 5, p^(4*k) - 1 == 0 (mod 240*k). - Federico Provvedi, May 23 2022
As noted in the comments to A085152, Størmer's theorem implies that the only pairs of consecutive integers that appear as consecutive terms of this sequence are (1,2), (2,3), (3,4), (4,5), (5,6), (8,9), (9,10), (15,16), (24,25), and (80,81). These all represent significant musical intervals. - Hal M. Switkay, Dec 05 2022

Examples

			From _Gus Wiseman_, May 21 2021: (Start)
The sequence of terms together with their prime indices begins:
      1: {}            25: {3,3}
      2: {1}           27: {2,2,2}
      3: {2}           30: {1,2,3}
      4: {1,1}         32: {1,1,1,1,1}
      5: {3}           36: {1,1,2,2}
      6: {1,2}         40: {1,1,1,3}
      8: {1,1,1}       45: {2,2,3}
      9: {2,2}         48: {1,1,1,1,2}
     10: {1,3}         50: {1,3,3}
     12: {1,1,2}       54: {1,2,2,2}
     15: {2,3}         60: {1,1,2,3}
     16: {1,1,1,1}     64: {1,1,1,1,1,1}
     18: {1,2,2}       72: {1,1,1,2,2}
     20: {1,1,3}       75: {2,3,3}
     24: {1,1,1,2}     80: {1,1,1,1,3}
(End)
		

Crossrefs

Subsequences: A003592, A003593, A051916 , A257997.
For p-smooth numbers with other values of p, see A003586, A002473, A051038, A080197, A080681, A080682, A080683.
The partitions with these Heinz numbers are counted by A001399.
The conjugate opposite is A033942, counted by A004250.
The opposite is A059485, counted by A004250.
The non-3-smooth case is A080193, counted by A069905.
The conjugate is A037144, counted by A001399.
The complement is A279622, counted by A035300.
Requiring the sum of prime indices to be even gives A344297.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a051037 n = a051037_list !! (n-1)
    a051037_list = f $ singleton 1 where
       f s = y : f (insert (5 * y) $ insert (3 * y) $ insert (2 * y) s')
                   where (y, s') = deleteFindMin s
    -- Reinhard Zumkeller, May 16 2015
    
  • Magma
    [n: n in [1..500] | PrimeDivisors(n) subset [2,3,5]]; // Bruno Berselli, Sep 24 2012
    
  • Maple
    A051037 := proc(n)
        option remember;
        local a;
        if n = 1 then
            1;
        else
            for a from procname(n-1)+1 do
                numtheory[factorset](a) minus {2, 3,5 } ;
                if % = {} then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A051037(n),n=1..100) ; # R. J. Mathar, Nov 05 2017
  • Mathematica
    mx = 405; Sort@ Flatten@ Table[ 2^a*3^b*5^c, {a, 0, Log[2, mx]}, {b, 0, Log[3, mx/2^a]}, {c, 0, Log[5, mx/(2^a*3^b)]}] (* Or *)
    Select[ Range@ 405, Last@ Map[First, FactorInteger@ #] < 7 &] (* Robert G. Wilson v *)
    With[{nn=10},Select[Union[Times@@@Flatten[Table[Tuples[{2,3,5},n],{n,0,nn}],1]],#<=2^nn&]] (* Harvey P. Dale, Feb 28 2022 *)
  • PARI
    test(n)= {m=n; forprime(p=2,5, while(m%p==0,m=m/p)); return(m==1)}
    for(n=1,500,if(test(n),print1(n",")))
    
  • PARI
    a(n)=local(m); if(n<1,0,n=a(n-1); until(if(m=n, forprime(p=2,5, while(m%p==0,m/=p)); m==1),n++); n)
    
  • PARI
    list(lim)=my(v=List(),s,t); for(i=0,logint(lim\=1,5), t=5^i; for(j=0,logint(lim\t,3), s=t*3^j; while(s<=lim, listput(v,s); s<<=1))); Set(v) \\ Charles R Greathouse IV, Sep 21 2011; updated Sep 19 2016
    
  • PARI
    smooth(P:vec,lim)={ my(v=List([1]),nxt=vector(#P,i,1),indx,t);
    while(1, t=vecmin(vector(#P,i,v[nxt[i]]*P[i]),&indx);
    if(t>lim,break); if(t>v[#v],listput(v,t)); nxt[indx]++);
    Vec(v)
    };
    smooth([2,3,5], 1e4) \\ Charles R Greathouse IV, Dec 03 2013
    
  • PARI
    is_A051037(n)=n<7||vecmax(factor(n,6)[, 1])<7 \\ M. F. Hasler, Jan 16 2015
    
  • Python
    def isok(n):
      while n & 1 == 0: n >>= 1
      while n % 3 == 0: n //= 3
      while n % 5 == 0: n //= 5
      return n == 1 #  Darío Clavijo, Dec 30 2022
    
  • Python
    from sympy import integer_log
    def A051037(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c = n+x
            for i in range(integer_log(x,5)[0]+1):
                for j in range(integer_log(y:=x//5**i,3)[0]+1):
                    c -= (y//3**j).bit_length()
            return c
        return bisection(f,n,n) # Chai Wah Wu, Sep 16 2024
    
  • Python
    # faster for initial segment of sequence
    import heapq
    from itertools import islice
    def A051037gen(): # generator of terms
        v, oldv, h, psmooth_primes, = 1, 0, [1], [2, 3, 5]
        while True:
            v = heapq.heappop(h)
            if v != oldv:
                yield v
                oldv = v
                for p in psmooth_primes:
                        heapq.heappush(h, v*p)
    print(list(islice(A051037gen(), 65))) # Michael S. Branicky, Sep 17 2024

Formula

Let s(n) = Card(k | a(k)Benoit Cloitre, Dec 30 2001
The characteristic function of this sequence is given by:
Sum_{n>=1} x^a(n) = Sum_{n>=1} -Möbius(30*n)*x^n/(1-x^n). - Paul D. Hanna, Sep 18 2011
a(n) = A143207(n) / 30. - Reinhard Zumkeller, Sep 13 2011
A204455(15*a(n)) = 15, and only for these numbers. - Wolfdieter Lang, Feb 04 2012
A006530(a(n)) <= 5. - Reinhard Zumkeller, May 16 2015
Sum_{n>=1} 1/a(n) = Product_{primes p <= 5} p/(p-1) = (2*3*5)/(1*2*4) = 15/4. - Amiram Eldar, Sep 22 2020

A083662 a(n) = a(floor(n/2)) + a(floor(n/4)), n > 0; a(0)=1.

Original entry on oeis.org

1, 2, 3, 3, 5, 5, 5, 5, 8, 8, 8, 8, 8, 8, 8, 8, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34
Offset: 0

Views

Author

Benoit Cloitre, Oct 05 2003

Keywords

Comments

A000045(n+2) = a(A131577(n))and A000045(m+2) < a(m) for m < A131577(n). - Reinhard Zumkeller, Sep 26 2009

Crossrefs

Programs

  • PARI
    a(n)=if(n<1,n==0,a(n\2)+a(n\4))

Formula

For n > 0, a(n) = F([log(n)/log(2)]+3) where F(k) denotes the k-th Fibonacci number. For n >= 3, F(n) appears 2^(n-3) times. More generally, if p is an integer > 1 and a(n) = a(floor(n/p)) + a(floor(n/p^2)), n > 0, a(0)=1, then for n > 0, a(n) = F(floor(log(n)/log(p)) + 3).

A088468 a(0) = 1, a(n) = a(floor(n/2)) + a(floor(n/3)) for n > 0.

Original entry on oeis.org

1, 2, 3, 4, 5, 5, 7, 7, 8, 9, 9, 9, 12, 12, 12, 12, 13, 13, 16, 16, 16, 16, 16, 16, 20, 20, 20, 21, 21, 21, 21, 21, 22, 22, 22, 22, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 33, 33, 33, 33, 33, 33, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 38, 38, 38, 38, 38, 38, 38, 38, 48
Offset: 0

Views

Author

Michael Somos, Oct 02 2003

Keywords

Comments

Record values greater than 1 occur at 3-smooth numbers: A160519(n)=a(A003586(n)) and A160519(m)A003586(n). - Reinhard Zumkeller, May 16 2009

Crossrefs

Equals A061984(n) + 1.

Programs

  • Mathematica
    a[0]=1;a[n_]:=a[n]=a[Floor[n/2]]+a[Floor[n/3]];Array[a,75,0] (* Harvey P. Dale, Aug 23 2020 *)
  • PARI
    a(n)=if(n<1,n==0,a(n\2)+a(n\3))

Formula

Limit_{n->oo} a(n)/n = 0, as proved in Michael Penn's Youtube video (see Links). Michael Penn states in the video that this is a simplification of a problem of Paul Erdős, where the original problem is to show that limit_{n->oo} b(n)/n = 12/log(432) for b(0) = 1, b(n) = b(floor(n/2)) + b(floor(n/3)) + b(floor(n/6)) for n > 0 ({b(n)} is the sequence A007731). - Jianing Song, Sep 27 2023

A007731 a(n) = a(floor(n/2)) + a(floor(n/3)) + a(floor(n/6)), with a(0) = 1.

Original entry on oeis.org

1, 3, 5, 7, 9, 9, 15, 15, 17, 19, 19, 19, 29, 29, 29, 29, 31, 31, 41, 41, 41, 41, 41, 41, 55, 55, 55, 57, 57, 57, 57, 57, 59, 59, 59, 59, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 103, 103, 103, 103, 103, 103, 117, 117
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a007731 n = a007731_list !! n
    a007731_list = 1 : (zipWith3 (\u v w -> u + v + w)
       (map (a007731 . (`div` 2)) [1..])
       (map (a007731 . (`div` 3)) [1..])
       (map (a007731 . (`div` 6)) [1..]))
    -- Reinhard Zumkeller, Jan 11 2014
    
  • Maple
    A007731 := proc(n) option remember; if n=0 then RETURN(1) else RETURN( A007731(trunc(n/2))+A007731(trunc(n/3))+A007731(trunc(n/6))); fi; end;
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1,
          add(a(floor(n/i)), i=[2, 3, 6]))
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Sep 27 2023
  • Mathematica
    a[n_] := a[n] = a[Floor[n/2]] + a[Floor[n/3]] + a[Floor[n/6]] ; a[0] = 1; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Mar 06 2014 *)
  • PARI
    a(n)=if(n<5, 2*n+1, a(n\2) + a(n\3) + a(n\6)) \\ Charles R Greathouse IV, Feb 08 2017

Formula

From given link, a(n) is asymptotic to c*n where c = 12/log(432) = 1.97744865... - Benoit Cloitre, Dec 18 2002

Extensions

Name clarified by Michel Marcus, Apr 10 2025

A165706 a(0) = 1, a(n) = a([n/2]) + a([n/5]) for n > 1.

Original entry on oeis.org

1, 2, 3, 3, 4, 5, 5, 5, 6, 6, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22
Offset: 0

Views

Author

Reinhard Zumkeller, Sep 26 2009

Keywords

Comments

For n>0: A165707(n)=a(A003592(n)) and A165707(m)A003592(n).

Crossrefs

Programs

Showing 1-6 of 6 results.