cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A000977 Numbers that are divisible by at least three different primes.

Original entry on oeis.org

30, 42, 60, 66, 70, 78, 84, 90, 102, 105, 110, 114, 120, 126, 130, 132, 138, 140, 150, 154, 156, 165, 168, 170, 174, 180, 182, 186, 190, 195, 198, 204, 210, 220, 222, 228, 230, 231, 234, 238, 240, 246, 252, 255, 258, 260, 264, 266, 270, 273, 276, 280, 282, 285
Offset: 1

Views

Author

Keywords

Comments

a(n+1)-a(n) seems bounded and sequence appears to give n such that the number of integers of the form nk/(n+k) k>=1 is not equal to Sum_{ d | n} omega(d) (i.e., n such that A062799(n) is not equal to A063647(n)). - Benoit Cloitre, Aug 27 2002
The first differences are bounded: clearly a(n+1) - a(n) <= 30. - Charles R Greathouse IV, Dec 19 2011

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844.

Crossrefs

Complement of A070915.

Programs

  • Haskell
    a000977 n = a000977_list !! (n-1)
    a000977_list = filter ((> 2) . a001221) [1..]
    -- Reinhard Zumkeller, May 03 2013
  • Maple
    A000977 := proc(n)
    if (nops(numtheory[factorset](n)) >= 3) then
       RETURN(n)
    fi: end:  seq(A000977(n), n=1..500); # Jani Melik, Feb 24 2011
  • Mathematica
    DeleteCases[Table[If[Count[PrimeQ[Divisors[i]], True] >= 3, i, 0], {i, 1, 274}], 0]
    Select[Range[300], PrimeNu[#] >= 3 &] (* Paolo Xausa, Mar 28 2024 *)
  • PARI
    is(n)=omega(n)>2 \\ Charles R Greathouse IV, Dec 19 2011
    

Formula

a(n) = n + O(n log log n / log n). - Charles R Greathouse IV, Dec 19 2011 A001221(a(n)) > 2. - Reinhard Zumkeller, May 03 2013
A033992 UNION A033993 UNION A051270 UNION A074969 UNION A176655 UNION ... - R. J. Mathar, Dec 05 2016

Extensions

More terms from Vit Planocka (planocka(AT)mistral.cz), Sep 17 2002

A125666 Table read by ascending antidiagonals: n-th row of table consists of the positive integers divisible by exactly n distinct primes.

Original entry on oeis.org

2, 6, 3, 30, 10, 4, 210, 42, 12, 5, 2310, 330, 60, 14, 7, 30030, 2730, 390, 66, 15, 8, 510510, 39270, 3570, 420, 70, 18, 9, 9699690, 570570, 43890, 3990, 462, 78, 20, 11, 223092870, 11741730, 690690, 46410, 4290, 510, 84, 21, 13, 6469693230, 281291010
Offset: 1

Views

Author

Leroy Quet, Jan 29 2007

Keywords

Comments

Concatenated sequence is a permutation of the integers >= 2.
The chosen encoding of the table by *rising* antidiagonals is contrary to the OEIS standard which rather expects falling antidiagonals: as a consequence, displaying this sequence as a table (2nd link after the list of terms above) will list the integers with given number of prime divisors in columns rather than rows. - M. F. Hasler, Jun 06 2024

Examples

			The table begins:
  n\k|     1     2    3    4    5    6  ...
  ---+-------------------------------------
   1 |     2,    3,   4,   5,   7,   8, ...
   2 |     6,   10,  12,  14,  15, ...
   3 |    30,   42,  60,  66, ...
   4 |   210,  330, 390, ...
   5 |  2310, 2730, ...
   6 | 30030,  ...
  ...|   ...
		

Crossrefs

Cf. A001221, A002110 (col 1), A246655 (row 1), A007774 (row 2), A033992 (row 3), A033993 (row 4), A051270 (row 5), A074969 (row 6), A176655 (row 7), A348072 (row 8), A348073 (row 9), A073329 (diag), compare to A048692.

Programs

  • Mathematica
    f[n_, m_] := f[n, m] = Block[{c = m, k = If[m == 1, Product[Prime[i], {i, n}], f[n, m - 1] + 1]},While[Length@FactorInteger[k] != n, k++ ];k];Table[f[d - m + 1, m], {d, 10}, {m, d}] // Flatten (* Ray Chandler, Feb 08 2007 *)
  • PARI
    A125666(n, k=0)={if(k, for(m=vecprod(primes(n)), oo, omega(m)!=n || k-- || return(m)), A125666(A004736(n), A002260(n)))} \\ M. F. Hasler, Jun 06 2024

Extensions

Extended by Ray Chandler, Feb 08 2007

A123321 Products of 7 distinct primes (squarefree 7-almost primes).

Original entry on oeis.org

510510, 570570, 690690, 746130, 870870, 881790, 903210, 930930, 1009470, 1067430, 1111110, 1138830, 1193010, 1217370, 1231230, 1272810, 1291290, 1345890, 1360590, 1385670, 1411410, 1438710, 1452990, 1504230, 1540770
Offset: 1

Views

Author

Rick L. Shepherd, Sep 25 2006

Keywords

Comments

Intersection of A005117 and A046308.
Intersection of A005117 and A176655. - R. J. Mathar, Dec 05 2016

Examples

			a(1) = 510510 = 2*3*5*7*11*13*17 = A002110(7).
		

Crossrefs

Cf. A005117, A046308, A048692, Squarefree k-almost primes: A000040 (k=1), A006881 (k=2), A007304 (k=3), A046386 (k=4), A046387 (k=5), A067885 (k=6), A123322 (k=8), A115343 (k=9).

Programs

  • Mathematica
    f7Q[n_]:=Last/@FactorInteger[n]=={1, 1, 1, 1, 1, 1, 1}; lst={};Do[If[f7Q[n], AppendTo[lst, n]], {n, 9!}];lst (* Vladimir Joseph Stephan Orlovsky, Aug 26 2008 *)
    Select[Range[1600000],PrimeNu[#]==7&&SquareFreeQ[#]&] (* Harvey P. Dale, Sep 19 2013 *)
  • PARI
    is(n)=omega(n)==7 && bigomega(n)==7 \\ Hugo Pfoertner, Dec 18 2018
    
  • Python
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A123321(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,7)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f) # Chai Wah Wu, Aug 31 2024

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Aug 26 2008

A364265 The first term in a chain of at least 3 consecutive numbers each with exactly 6 distinct prime factors (i.e., belonging to A074969).

Original entry on oeis.org

323567034, 431684330, 468780388, 481098980, 577922904, 639336984, 715008644, 720990620, 726167154, 735965384, 769385252, 808810638, 822981560, 831034918, 839075510, 847765554, 879549670, 895723268, 902976710, 903293468, 904796814, 918520420, 940737005, 944087484, 982059364
Offset: 1

Views

Author

R. J. Mathar, Jul 16 2023

Keywords

Comments

To distinguish this from A259349: "Numbers n with exactly k distinct prime factors" means numbers with A001221(n) = omega(n) = k, which specifies that in the prime factorization n = Product_{i>=1} p_i^(e_i), e_i >= 1, the exponents are ignored, and only the size of the set of the (distinct) p_i is considered. In A259349, the numbers n are products of k distinct primes, which means in the prime factorization of n, all exponents e_i are equal to 1. (If all exponents e_i = 1, the n are squarefree, i.e., in A005117.) Rephrased: the n which are products of k distinct primes have A001221(n) = omega(n) = A001222(n) = bigomega(n) = k, whereas the n which have exactly k distinct prime factors are the superset of (weaker) requirement A001221(n) = omega(n) = k. - R. J. Mathar, Jul 18 2023

Crossrefs

Cf. A259349 (requires squarefree). Subsequence of A273879.
Cf. A364266 (5 distinct factors).
See also A001221, A001222, A005117.
Numbers divisible by d distinct primes: A246655 (d=1), A007774 (d=2), A033992 (d=3), A033993 (d=4), A051270 (d=5), A074969 (d=6), A176655 (d=7), A348072 (d=8), A348073 (d=9).

Programs

  • Maple
    omega := proc(n)
        nops(numtheory[factorset](n)) ;
    end proc:
    for k from 1 do
        if omega(k) = 6 then
            if omega(k+1) = 6 then
                if omega(k+2) = 6 then
                    print(k) ;
                end if;
            end if;
        end if;
    end do:
  • PARI
    upto(n) = {my(res = List(), streak = 0); forfactored(i = 2, n, if(#i[2]~ == 6, streak++; if(streak >= 3, listput(res, i[1] - 2)), streak = 0)); res} \\ David A. Corneth, Jul 18 2023

Formula

a(1) = A138206(3).
{k: A001221(k) = A001221(k+1) = A001221(k+2) = 6}.

Extensions

More terms from David A. Corneth, Jul 18 2023

A046397 Palindromes which are the product of exactly 7 distinct primes.

Original entry on oeis.org

22444422, 24266242, 26588562, 35888853, 36399363, 43777734, 47199174, 51066015, 53588535, 53888835, 55233255, 59911995, 60066006, 62588526, 62700726, 62888826, 81699618, 87788778, 89433498, 122434221, 202040202
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Comments

The original name "Palindromes with exactly 7 distinct prime factors" did not exclude that one or more of the factors occurred to a higher power: this is sequence A373467. As the listed data show, terms of this sequence must be squarefree. - M. F. Hasler, Jun 06 2024

Examples

			The first two palindromes with 7 distinct prime factors are 20522502 = 2 * 3^2 * 7 * 11 * 13 * 17 * 67 and 21033012 = 2^2 * 3 * 7 * 11 * 13 * 17 * 103, but these are excluded since one of the prime factors occurs to a higher power.
a(1) = 22444422 = 2 * 3 * 7 * 11 * 13 * 37 * 101, which is squarefree, is therefore the first term of this sequence.
		

Crossrefs

Cf. A046333 (similar but prime factors counted with multiplicity), A373467 (similar but counting just the distinct prime divisors).
Cf. A002113 (palindromes), A123321 (products of 7 distinct primes), A176655 (numbers with omega = 7 distinct prime divisors).

Programs

  • Maple
    digrev:= proc(n) local L,i;
      L:= convert(n,base,10);
      add(L[-i]*10^(i-1),i=1..nops(L))
    end proc:
    filter:= proc(n) local F;
      F:= ifactors(n)[2];
      nops(F) = 7 and map(t -> t[2],F)=[1$7]
    end proc:
    Res:= NULL:
    count:= 0:
    for d from 2  while count < 100 do
      if d::even then
        m:= d/2;
        for n from 10^(m-1) to 10^m-1 while count < 100 do
          v:= n*10^m+digrev(n);
          if filter(v) then count:= count+1; Res:= Res, v; fi;
        od;
      else
        m:= (d-1)/2;
        for n from 10^(m-1) to 10^m-1 while count < 100 do
          for y from 0 to 9 while count < 100 do
             v:= n*10^(m+1)+y*10^m+digrev(n);
             if filter(v) then count:= count+1; Res:= Res, v; fi;
        od od
      fi
    od:
    Res; # Robert Israel, Jan 20 2020
  • PARI
    A046397_upto(N, start=vecprod(primes(7)), num_fact=7)={ my(L=List()); is_A002113(start)&& start--; while(N >= start = nxt_A002113(start), omega(start)==num_fact && issquarefree(start) && listput(L, start)); L} \\ M. F. Hasler, Jun 06 2024

A373467 Palindromes with exactly 7 (distinct) prime divisors.

Original entry on oeis.org

20522502, 21033012, 22444422, 23555532, 24266242, 25777752, 26588562, 35888853, 36399363, 41555514, 41855814, 42066024, 43477434, 43777734, 44888844, 45999954, 47199174, 51066015, 51666615, 52777725, 53588535, 53888835, 55233255, 59911995, 60066006, 60366306, 61777716, 62588526, 62700726
Offset: 1

Views

Author

M. F. Hasler, Jun 06 2024

Keywords

Examples

			Obviously all terms must be palindromic; let us consider the prime factorization:
a(1) = 20522502 = 2 * 3^2 * 7 * 11 * 13 * 17 * 67 has exactly 7 distinct prime divisors, although the factor 3 appears twice in the factorization. (Without the second factor 3 the number would not be palindromic.)
a(2) = 21033012 = 2^2 * 3 * 7 * 11 * 13 * 17 * 103 has exactly 7 distinct prime divisors, although the factor 2 appears twice in the factorization. (Without the second factor 2 the number would not be palindromic.)
a(3) = 22444422 = 2 * 3 * 7 * 11 * 13 * 37 * 101 is the product of 7 distinct primes (cf. A123321), hence the first squarefree term of this sequence.
		

Crossrefs

Cf. A046333 (same with bigomega = 7: counting prime factors with multiplicity), A046397 (same but only squarefree terms), A373465 (same with omega = 5), A046396 (same with omega = 6).
Cf. A002113 (palindromes), A176655 (omega(.) = 7), A123321 (products of 7 distinct primes).

Programs

  • PARI
    A373467_upto(N, start=vecprod(primes(7)), num_fact=7)={ my(L=List()); while(N >= start = nxt_A002113(start), omega(start)==num_fact && listput(L, start)); L}

Formula

Intersection of A002113 and A176655.

A348266 k-digit numbers whose digit(s) are the number of distinct prime factors in each of the preceding k integers.

Original entry on oeis.org

22, 313, 2232, 2323, 2333, 32215, 432152, 2434332, 4222423, 43332543, 332325334, 2535332433, 4532543535234, 5435433351423
Offset: 1

Views

Author

Metin Sariyar, Oct 09 2021

Keywords

Comments

a(12) <= 2535332433. - David A. Corneth, Oct 10 2021
a(12) >= 10^9. - Michel Marcus, Oct 11 2021

Examples

			22 is a term because omega(20) = 2 and omega(21) = 2, whose concatenation is 22.
313 is a term because preceding it omega(310) = 3, omega(311) = 1 and omega(312) = 3, and their concatenation is 313.
32215 is a term because, the number of distinct prime divisors of 32210, 32211, 32212, 32213 and 32214 are 3, 2, 2, 1, 5 and their ordered concatenation gives the next number 32215.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[33000], FromDigits[PrimeNu /@ (# - Range[IntegerLength[#], 1, -1])] == # &] (* Amiram Eldar, Oct 09 2021 *)
  • PARI
    isok(m) = {my(s="", k=m, i=1); while(1, s = concat(s, Str(omega(k))); if (eval(s) == m+i, return (i)); if (eval(s) > m+i, return(0)); k++; i++;);}
    lista(nn) = my(nb); for(n=1, nn, if (nb=isok(n), print1(n+nb, ", "))); \\ Michel Marcus, Oct 09 2021

Extensions

a(8)-a(9) from Amiram Eldar, Oct 09 2021
a(10)-a(11) from Michel Marcus, Oct 10 2021
a(12) confirmed by Martin Ehrenstein, Oct 28 2021
a(13)-a(14) from Martin Ehrenstein, Oct 30 2021

A176756 Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=4, k=0 and l=-2.

Original entry on oeis.org

1, 4, 6, 26, 98, 438, 1970, 9294, 44698, 219766, 1096930, 5549614, 28383498, 146538150, 762627954, 3996744862, 21074272538, 111723476502, 595145562242, 3183988894350, 17100312159018, 92164073738118, 498318304290450
Offset: 0

Views

Author

Richard Choulet, Apr 25 2010

Keywords

Examples

			a(2)=2*1*4-2=6. a(3)=2*1*6+4^2-2=26. a(4)=2*1*26+2*4*6-2=98.
		

Crossrefs

Cf. A176655.

Programs

  • Maple
    l:=-2: : k := 0 : m:=4:d(0):=1:d(1):=m: for n from 1 to 30 do d(n+1):=sum(d(p)*d(n-p)+k, p=0..n)+l:od : taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z), z=0, 30); seq(d(n), n=0..30);

Formula

G.f f: f(z)=(1-sqrt(1-4*z*(a(0)-z*a(0)^2+z*a(1)+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z) (k=0, l=-2).
Conjecture: (n+1)*a(n) +2*(-3*n+1)*a(n-1) +(-3*n+11)*a(n-2) +2*(14*n-45)*a(n-3) +20*(-n+4)*a(n-4)=0. - R. J. Mathar, Feb 18 2016

A348882 Numbers that are expressible as the product of the number of distinct prime factors of preceding integers.

Original entry on oeis.org

16, 48, 72, 96, 144, 432, 576, 1296, 2592, 5184, 20736, 32805, 221184, 1555200, 11197440, 55987200, 95551488, 268738560, 302330880, 382205952, 524880000, 671846400, 6718464000, 34012224000, 155520000000, 403107840000, 6856864358400, 107495424000000, 110075314176000
Offset: 1

Views

Author

Metin Sariyar, Nov 02 2021

Keywords

Examples

			The number of distinct prime factors of the numbers 15, 14, 13, 12, 11, 10 are respectively 2, 2, 1, 2, 1, 2 and 2*2*1*2*1*2 = 16, hence 16 is a term.
		

Crossrefs

Programs

  • Mathematica
    om[n_] := om[n] = PrimeNu[n]; q[n_] := Module[{m = n, k = n - 1}, While[k > 1 && Divisible[m, om[k]], m /= om[k]; k--]; m == 1]; Select[Range[2, 10^6], q] (* Amiram Eldar, Nov 02 2021 *)

Extensions

a(13)-a(17) from Amiram Eldar, Nov 02 2021
More terms from David A. Corneth, Nov 02 2021
Showing 1-9 of 9 results.