A088902
Numbers n such that n = product (p_k)^(c_k) and set of its (c_k k's)'s is a self-conjugate partition, where p_k is k-th prime and c_k > 0.
Original entry on oeis.org
1, 2, 6, 9, 20, 30, 56, 75, 84, 125, 176, 210, 264, 350, 416, 441, 624, 660, 735, 1088, 1100, 1386, 1560, 1632, 1715, 2310, 2401, 2432, 2600, 3267, 3276, 3648, 4080, 5390, 5445, 5460, 5888, 6800, 7546, 7722, 8568, 8832, 9120, 12705, 12740, 12870, 13689
Offset: 1
20 is in the sequence because 20 = 2^2 * 5^1 = (p_1)^2 *(p_3)^1, (two 1's, one 3's) = (1,1,3) is a self-conjugate partition of 5.
From _Gus Wiseman_, Jun 28 2022: (Start)
The terms together with their prime indices begin:
1: ()
2: (1)
6: (2,1)
9: (2,2)
20: (3,1,1)
30: (3,2,1)
56: (4,1,1,1)
75: (3,3,2)
84: (4,2,1,1)
125: (3,3,3)
176: (5,1,1,1,1)
210: (4,3,2,1)
264: (5,2,1,1,1)
(End)
A002110 (primorial numbers) is a subsequence.
After a(1) and a(2), a subsequence of
A241913.
These partitions are counted by
A000700.
These are the positions of zeros in
A352491.
A325039 counts partitions w/ product = conjugate product, ranked by
A325040.
Heinz number (rank) and partition:
-
with(numtheory): c := proc (n) local B, C: B := proc (n) local pf: pf := op(2, ifactors(n)): [seq(seq(pi(op(1, op(i, pf))), j = 1 .. op(2, op(i, pf))), i = 1 .. nops(pf))] end proc: C := proc (P) local a: a := proc (j) local c, i: c := 0: for i to nops(P) do if j <= P[i] then c := c+1 else end if end do: c end proc: [seq(a(k), k = 1 .. max(P))] end proc: mul(ithprime(C(B(n))[q]), q = 1 .. nops(C(B(n)))) end proc: SC := {}: for i to 14000 do if c(i) = i then SC := `union`(SC, {i}) else end if end do: SC; # Emeric Deutsch, May 09 2015
-
Select[Range[14000], Function[n, n == If[n == 1, 1, Module[{l = #, m = 0}, Times @@ Power @@@ Table[l -= m; l = DeleteCases[l, 0]; {Prime@ Length@ l, m = Min@ l}, Length@ Union@ l]] &@ Catenate[ConstantArray[PrimePi@ #1, #2] & @@@ FactorInteger@ n]]]] (* Michael De Vlieger, Aug 27 2016, after JungHwan Min at A122111 *)
A000701
One half of number of non-self-conjugate partitions; also half of number of asymmetric Ferrers graphs with n nodes.
Original entry on oeis.org
0, 0, 1, 1, 2, 3, 5, 7, 10, 14, 20, 27, 37, 49, 66, 86, 113, 146, 190, 242, 310, 392, 497, 623, 782, 973, 1212, 1498, 1851, 2274, 2793, 3411, 4163, 5059, 6142, 7427, 8972, 10801, 12989, 15572, 18646, 22267, 26561, 31602, 37556, 44533, 52743, 62338, 73593
Offset: 0
G.f. = x^2 + x^3 + 2*x^4 + 3*x^5 + 5*x^6 + 7*x^7 + 10*x^8 + 14*x^9 + ...
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)
- Brian Hopkins and Michael A. Jones, Shift-Induced Dynamical Systems on Partitions and Compositions, Electron. J. Combin. 13 (2006), Research Paper 80, see p. 10.
- M. Osima, On the irreducible representations of the symmetric group, Canad. J. Math., 4 (1952), 381-384.
Heinz number (rank) and partition:
-
A352488 = rank greater than or equal to conjugate, counted by
A046682.
-
with(combinat); A000701 := n->(numbpart(n)-A000700(n))/2;
-
a41 = PartitionsP; a700[n_] := SeriesCoefficient[ Product[1 + x^k, {k, 1, n, 2}], {x, 0, n}]; a[0] = 0; a[n_] := (a41[n] - a700[n])/2; Table[a[n], {n, 0, 48}] (* Jean-François Alcover, Feb 21 2012, after first formula *)
a[ n_] := SeriesCoefficient[ (1 / QPochhammer[ x] - 1 / QPochhammer[ x, -x]) / 2, {x, 0, n}]; (* Michael Somos, Aug 25 2015 *)
a[ n_] := SeriesCoefficient[ (1 - EllipticTheta[ 4, 0, x^2]) / (2 QPochhammer[ x]), {x, 0, n}]; (* Michael Somos, Aug 25 2015 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x] Sum[ x^(2 k) / QPochhammer[ x^2, x^2, k], {k, 1, n/2, 2}], {x, 0, n}] (* Michael Somos, Aug 25 2015 *)
a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ (1 / QPochhammer[ x, x, k]^2 - 1 / QPochhammer[ x^2, x^2, k]) x^k^2, {k, Sqrt@n}] / 2, {x, 0, n}]]; (* Michael Somos, Aug 25 2015 *)
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
Table[Length[Select[IntegerPartitions[n],Times@@Prime/@#>Times@@Prime/@conj[#]&]],{n,0,15}] (* Gus Wiseman, Mar 31 2022 *)
-
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (1 - eta(x^2 + A)^2 / eta(x^4 + A) ) / (2 * eta(x + A)), n))}; /* Michael Somos, Aug 25 2015 */
-
q='q+O('q^60); concat([0, 0], Vec((1-eta(q^2)^2/eta(q^4))/(2*eta(q)))) \\ Altug Alkan, Sep 26 2018
A046682
Number of cycle types of conjugacy classes of all even permutations of n elements.
Original entry on oeis.org
1, 1, 1, 2, 3, 4, 6, 8, 12, 16, 22, 29, 40, 52, 69, 90, 118, 151, 195, 248, 317, 400, 505, 632, 793, 985, 1224, 1512, 1867, 2291, 2811, 3431, 4186, 5084, 6168, 7456, 9005, 10836, 13026, 15613, 18692, 22316, 26613, 31659, 37619, 44601, 52815, 62416, 73680, 86809, 102162
Offset: 0
1 + x + x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 6*x^6 + 8*x^7 + 12*x^8 + 16*x^9 + ...
a(3)=2 since cycle types of even permutations of 3 elements is (.)(.)(.), (...).
a(4)=3 since cycle types of even permutations of 4 elements is (.)(.)(.)(.), (...)(.), (..)(..).
a(5)=4 (free Young diagrams):
XXXXX XXXX. XXX.. XXX..
..... X.... XX... X....
..... ..... ..... X....
..... ..... ..... .....
..... ..... ..... .....
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)
- George E. Andrews, David Newman, The Minimal Excludant in Integer Partitions, J. Int. Seq., Vol. 23 (2020), Article 20.2.3.
- J. Huh and B. Kim, The number of equivalence classes arising from partition involutions, Int. J. Number Theory, 16 (2020), 925-939.
- M. Osima, On the irreducible representations of the symmetric group, Canad. J. Math., 4 (1952), 381-384.
- Sheila Sundaram, On a positivity conjecture in the character table of S_n, arXiv:1808.01416 [math.CO], 2018.
For the number of conjugacy classes of the alternating group A_n, n>=2, see
A000702.
Heinz number (rank) and partition:
-
A352488 = rank greater than or equal to conjugate, counted by
A046682.
-
seq(add((-1)^(n-k)*combinat:-numbpart(n,k),k=0..n),n=0..48); # Peter Luschny, Aug 03 2015
-
max = 48; f[q_] := Sum[(-q^2)^n^2, {n, 0, max}]/Product[1-q^n, {n, 1, max}]; CoefficientList[ Series[f[q], {q, 0, max}], q] (* Jean-François Alcover, Oct 18 2011, after g.f. *)
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
Table[Length[Select[IntegerPartitions[n],Times@@Prime/@#>=Times@@Prime/@conj[#]&]],{n,0,15}] (* Gus Wiseman, Mar 31 2022 *)
-
list(lim)=my(q='q);Vec(sum(n=0,sqrt(lim),(-q^2)^(n^2))/prod(n=1,lim,1-q^n)+O(q^(lim\1+1))) \\ Charles R Greathouse IV, Oct 18 2011
-
{a(n) = if( n<0, 0, (numbpart(n) + polcoeff( 1 / prod( k=1, n, 1 + (-x)^k, 1 + x * O(x^n)), n)) / 2)} /* Michael Somos, Jul 24 2012 */
A053253
Coefficients of the '3rd-order' mock theta function omega(q).
Original entry on oeis.org
1, 2, 3, 4, 6, 8, 10, 14, 18, 22, 29, 36, 44, 56, 68, 82, 101, 122, 146, 176, 210, 248, 296, 350, 410, 484, 566, 660, 772, 896, 1038, 1204, 1391, 1602, 1846, 2120, 2428, 2784, 3182, 3628, 4138, 4708, 5347, 6072, 6880, 7784, 8804, 9940, 11208, 12630
Offset: 0
- Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, pp. 15, 17, 31.
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Seiichi Manyama)
- Steven Charlton, Explicit linear dependence congruence relations for the partition function modulo 4, arXiv:2412.17459 [math.NT], 2024. See p. 3.
- Leila A. Dragonette, Some asymptotic formulas for the mock theta series of Ramanujan, Trans. Amer. Math. Soc., 72 (1952) 474-500.
- John F. R. Duncan, Michael J. Griffin and Ken Ono, Proof of the Umbral Moonshine Conjecture, arXiv:1503.01472 [math.RT], 2015.
- George N. Watson, The final problem: an account of the mock theta functions, J. London Math. Soc., 11 (1936) 55-80.
Conjectured to count the partitions ranked by
A352143.
A117958 = partitions w/ all odd parts and multiplicities, ranked by
A352142.
-
Series[Sum[q^(2n(n+1))/Product[1-q^(2k+1), {k, 0, n}]^2, {n, 0, 6}], {q, 0, 100}]
-
{a(n)=local(A); if(n<0, 0, A=1+x*O(x^n); polcoeff( sum(k=0, (sqrtint(2*n+1)-1)\2, A*=(x^(4*k)/(1-x^(2*k+1))^2 +x*O(x^(n-2*(k^2-k))))), n))} /* Michael Somos, Aug 18 2006 */
-
{a(n)=local(A); if(n<0, 0, n++; A=1+x*O(x^n); polcoeff( sum(k=0, n-1, A*=(x/(1-x^(2*k+1)) +x*O(x^(n-k)))), n))} /* Michael Somos, Aug 18 2006 */
A258117
The Heinz numbers in increasing order of the partitions into distinct even parts.
Original entry on oeis.org
1, 3, 7, 13, 19, 21, 29, 37, 39, 43, 53, 57, 61, 71, 79, 87, 89, 91, 101, 107, 111, 113, 129, 131, 133, 139, 151, 159, 163, 173, 181, 183, 193, 199, 203, 213, 223, 229, 237, 239, 247, 251, 259, 263, 267, 271, 273, 281, 293, 301, 303, 311, 317, 321, 337, 339, 349
Offset: 1
213 is in the sequence because it is the Heinz number of the partition [2,20]; indeed, (2nd prime)*(20th prime) = 3*71 = 213.
- G. E. Andrews, The Theory of Partitions, Addison-Wesley, Reading, Mass. 1976.
- G. E. Andrews, K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004, Cambridge.
-
with(numtheory): B := proc (n) local pf: pf := op(2, ifactors(n)): [seq(seq(pi(op(1, op(i, pf))), j = 1 .. op(2, op(i, pf))), i = 1 .. nops(pf))] end proc: DE := {}: for q to 350 do if `and`(nops(B(q)) = nops(convert(B(q), set)), map(type, convert(B(q), set), even) = {true}) then DE := `union`(DE, {q}) else end if end do: DE;
# second Maple program:
a:= proc(n) option remember; local k;
for k from 1+`if`(n=1, 0, a(n-1)) do
if not false in map(i-> i[2]=1 and numtheory
[pi](i[1])::even, ifactors(k)[2]) then break fi
od; k
end:
seq(a(n), n=1..100); # Alois P. Heinz, May 10 2016
-
a[n_] := a[n] = Module[{k}, For[k = 1 + If[n == 1, 0, a[n - 1]], True, k++, If[AllTrue[FactorInteger[k], #[[2]] == 1 && EvenQ[PrimePi[#[[1]]]]&], Break[]]]; k]; Array[a, 100] (* Jean-François Alcover, Dec 12 2016 after Alois P. Heinz *)
A340386
Heinz numbers of integer partitions with an odd number of parts, the greatest of which is odd.
Original entry on oeis.org
2, 5, 8, 11, 17, 20, 23, 30, 31, 32, 41, 44, 45, 47, 50, 59, 66, 67, 68, 73, 75, 80, 83, 92, 97, 99, 102, 103, 109, 110, 120, 124, 125, 127, 128, 137, 138, 149, 153, 154, 157, 164, 165, 167, 170, 176, 179, 180, 186, 188, 191, 197, 200, 207, 211, 227, 230
Offset: 1
The sequence of partitions together with their Heinz numbers begins:
2: (1) 59: (17) 120: (3,2,1,1,1)
5: (3) 66: (5,2,1) 124: (11,1,1)
8: (1,1,1) 67: (19) 125: (3,3,3)
11: (5) 68: (7,1,1) 127: (31)
17: (7) 73: (21) 128: (1,1,1,1,1,1,1)
20: (3,1,1) 75: (3,3,2) 137: (33)
23: (9) 80: (3,1,1,1,1) 138: (9,2,1)
30: (3,2,1) 83: (23) 149: (35)
31: (11) 92: (9,1,1) 153: (7,2,2)
32: (1,1,1,1,1) 97: (25) 154: (5,4,1)
41: (13) 99: (5,2,2) 157: (37)
44: (5,1,1) 102: (7,2,1) 164: (13,1,1)
45: (3,2,2) 103: (27) 165: (5,3,2)
47: (15) 109: (29) 167: (39)
50: (3,3,1) 110: (5,3,1) 170: (7,3,1)
Note: Heinz numbers are given in parentheses below.
The case of odd length only is
A026424.
The case of odd maximum only is
A244991.
These partitions are counted by
A340385.
The version for factorizations is
A340607.
A027193 counts partitions of odd length, or of odd maximum.
A106529 lists numbers with Omega equal to maximum prime index.
A339890 counts factorizations of odd length.
A340102 counts odd-length factorizations into odd factors.
Cf.
A001222,
A027187,
A056239,
A112798,
A236914,
A258116,
A300063,
A324522,
A340608,
A340788,
A340831.
A352490
Nonexcedance set of A122111. Numbers k > A122111(k), where A122111 represents partition conjugation using Heinz numbers.
Original entry on oeis.org
4, 8, 12, 16, 18, 24, 27, 32, 36, 40, 48, 50, 54, 60, 64, 72, 80, 81, 90, 96, 100, 108, 112, 120, 128, 135, 140, 144, 150, 160, 162, 168, 180, 192, 196, 200, 216, 224, 225, 240, 243, 250, 252, 256, 270, 280, 288, 300, 315, 320, 324, 336, 352, 360, 375, 378
Offset: 1
The terms together with their prime indices begin:
4: (1,1)
8: (1,1,1)
12: (2,1,1)
16: (1,1,1,1)
18: (2,2,1)
24: (2,1,1,1)
27: (2,2,2)
32: (1,1,1,1,1)
36: (2,2,1,1)
40: (3,1,1,1)
48: (2,1,1,1,1)
50: (3,3,1)
54: (2,2,2,1)
60: (3,2,1,1)
64: (1,1,1,1,1,1)
For example, the partition (4,4,1,1) has Heinz number 196 and its conjugate (4,2,2,2) has Heinz number 189, and 196 > 189, so 196 is in the sequence, and 189 is not.
These partitions are counted by
A000701.
These are the positions of positive terms in
A352491.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
Select[Range[100],#>Times@@Prime/@conj[primeMS[#]]&]
A352487
Excedance set of A122111. Numbers k < A122111(k), where A122111 represents partition conjugation using Heinz numbers.
Original entry on oeis.org
3, 5, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 77, 78, 79, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94
Offset: 1
The terms together with their prime indices begin:
3: (2)
5: (3)
7: (4)
10: (3,1)
11: (5)
13: (6)
14: (4,1)
15: (3,2)
17: (7)
19: (8)
21: (4,2)
22: (5,1)
23: (9)
25: (3,3)
26: (6,1)
28: (4,1,1)
For example, the partition (4,1,1) has Heinz number 28 and its conjugate (3,1,1,1) has Heinz number 40, and 28 < 40, so 28 is in the sequence, and 40 is not.
These partitions are counted by
A000701.
These are the positions of negative terms in
A352491.
A008292 is the triangle of Eulerian numbers (version without zeros).
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
Select[Range[100],#
A352488
Weak nonexcedance set of A122111. Numbers k >= A122111(k), where A122111 represents partition conjugation using Heinz numbers.
Original entry on oeis.org
1, 2, 4, 6, 8, 9, 12, 16, 18, 20, 24, 27, 30, 32, 36, 40, 48, 50, 54, 56, 60, 64, 72, 75, 80, 81, 84, 90, 96, 100, 108, 112, 120, 125, 128, 135, 140, 144, 150, 160, 162, 168, 176, 180, 192, 196, 200, 210, 216, 224, 225, 240, 243, 250, 252, 256, 264, 270, 280
Offset: 1
The terms together with their prime indices begin:
1: ()
2: (1)
4: (1,1)
6: (2,1)
8: (1,1,1)
9: (2,2)
12: (2,1,1)
16: (1,1,1,1)
18: (2,2,1)
20: (3,1,1)
24: (2,1,1,1)
27: (2,2,2)
30: (3,2,1)
32: (1,1,1,1,1)
36: (2,2,1,1)
40: (3,1,1,1)
48: (2,1,1,1,1)
50: (3,3,1)
54: (2,2,2,1)
56: (4,1,1,1)
These partitions are counted by
A046682.
These are the positions of nonnegative terms in
A352491.
A008292 is the triangle of Eulerian numbers (version without zeros).
A352525 counts compositions by weak superdiagonals, rank statistic
A352517.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
Select[Range[100],#>=Times@@Prime/@conj[primeMS[#]]&]
A352489
Weak excedance set of A122111. Numbers k <= A122111(k), where A122111 represents partition conjugation using Heinz numbers.
Original entry on oeis.org
1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84, 85
Offset: 1
The terms together with their prime indices begin:
1: ()
2: (1)
3: (2)
5: (3)
6: (2,1)
7: (4)
9: (2,2)
10: (3,1)
11: (5)
13: (6)
14: (4,1)
15: (3,2)
17: (7)
19: (8)
20: (3,1,1)
For example, the partition (3,2,2) has Heinz number 45 and its conjugate (3,3,1) has Heinz number 50, and 45 <= 50, so 45 is in the sequence, and 50 is not.
These partitions are counted by
A046682.
These are the positions of nonpositive terms in
A352491.
A008292 is the triangle of Eulerian numbers (version without zeros).
A352522 counts compositions by weak subdiagonals, rank statistic
A352515.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
Select[Range[100],#<=Times@@Prime/@conj[primeMS[#]]&]
Showing 1-10 of 21 results.
Comments