cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A277648 Triangle T(n,k) = A277647(n, A005117(k)), read by rows.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 4, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 5, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 4, 4, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 5, 4, 3, 3, 3, 2, 2, 2, 2, 2, 1
Offset: 1

Views

Author

Jason Kimberley, Nov 10 2016

Keywords

Comments

The columns of this triangle are the columns of A277647 with squarefree index.
Other that the first (with length 1), row n has length A278100(n).

Examples

			Triangle begins:
1;
2, 1, 1;
3, 2, 1, 1, 1, 1;
4, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1;
...
where the first 11 terms of A005117(k) are
1, 2, 3, 5, 6, 7,10,11,13,14,15.
		

Crossrefs

Programs

  • Magma
    A277647:=func;
    A277648_row:=funcA277647(n,k):k in[1..n^2]|IsSquarefree(k)]>;
    &cat[A277648_row(n):n in[1..8]];
    
  • Mathematica
    DeleteCases[#, 0] & /@ Table[Boole[SquareFreeQ@ k] Floor[n/Sqrt@ k], {n, 8}, {k, n^2}] (* Michael De Vlieger, Nov 24 2016 *)
  • PARI
    row(n)={apply(k->sqrtint(n^2\k), select(issquarefree,[1..n^2]))}
    for(n=1, 6, print(row(n))) \\ Andrew Howroyd, Feb 28 2018

Formula

T(n,k) = A000196(A277646(n,A005117(k))).
T(n,k) sqrt(A005117(k)) <= n < (T(n,k)+1) sqrt(A005117(k)).

Extensions

Missing a(3009) in b-file inserted by Andrew Howroyd, Feb 28 2018

A010766 Triangle read by rows: row n gives the numbers floor(n/k), k = 1..n.

Original entry on oeis.org

1, 2, 1, 3, 1, 1, 4, 2, 1, 1, 5, 2, 1, 1, 1, 6, 3, 2, 1, 1, 1, 7, 3, 2, 1, 1, 1, 1, 8, 4, 2, 2, 1, 1, 1, 1, 9, 4, 3, 2, 1, 1, 1, 1, 1, 10, 5, 3, 2, 2, 1, 1, 1, 1, 1, 11, 5, 3, 2, 2, 1, 1, 1, 1, 1, 1, 12, 6, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 13, 6, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Keywords

Comments

Number of times k occurs as divisor of numbers not greater than n. - Reinhard Zumkeller, Mar 19 2004
Viewed as a partition, row n is the smallest partition that contains every partition of n in the usual ordering. - Franklin T. Adams-Watters, Mar 11 2006
Row sums = A006218. - Gary W. Adamson, Oct 30 2007
A014668 = eigensequence of the triangle. A163313 = A010766 * A014668 (diagonalized) as an infinite lower triangular matrix. - Gary W. Adamson, Jul 30 2009
A018805(T(n,k)) = A242114(n,k). - Reinhard Zumkeller, May 04 2014
Viewed as partitions, all rows are self-conjugate. - Matthew Vandermast, Sep 10 2014
Row n is the partition whose Young diagram is the union of Young diagrams of all partitions of n (rewording of Franklin T. Adams-Watters's comment). - Harry Richman, Jan 13 2022

Examples

			Triangle starts:
   1:  1;
   2:  2,  1;
   3:  3,  1, 1;
   4:  4,  2, 1, 1;
   5:  5,  2, 1, 1, 1;
   6:  6,  3, 2, 1, 1, 1;
   7:  7,  3, 2, 1, 1, 1, 1;
   8:  8,  4, 2, 2, 1, 1, 1, 1;
   9:  9,  4, 3, 2, 1, 1, 1, 1, 1;
  10: 10,  5, 3, 2, 2, 1, 1, 1, 1, 1;
  11: 11,  5, 3, 2, 2, 1, 1, 1, 1, 1, 1;
  12: 12,  6, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1;
  13: 13,  6, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1;
  14: 14,  7, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1;
  15: 15,  7, 5, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1;
  16: 16,  8, 5, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1;
  17: 17,  8, 5, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1;
  18: 18,  9, 6, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1;
  19: 19,  9, 6, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
  20: 20, 10, 6, 5, 4, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
  ...
		

References

  • Florian Cajori, A History of Mathematical Notations, Dover edition (2012), par. 407.

Crossrefs

Another version of A003988.
Finite differences of rows: A075993.
Cf. related triangles: A002260, A013942, A051731, A163313, A277646, A277647.
Cf. related sequences: A006218, A014668, A115725.
Columns of this triangle:
T(n,1) = n,
T(n,2) = A008619(n-2) for n>1,
T(n,3) = A008620(n-3) for n>2,
T(n,4) = A008621(n-4) for n>3,
T(n,5) = A002266(n) for n>4,
T(n,n) = A000012(n) = 1.
Rows of this triangle (with infinite trailing zeros):
T(1,k) = A000007(k-1),
T(2,k) = A033322(k),
T(3,k) = A278105(k),
T(4,k) = A033324(k),
T(5,k) = A033325(k),
T(6,k) = A033326(k),
T(7,k) = A033327(k),
T(8,k) = A033328(k),
T(9,k) = A033329(k),
T(10,k) = A033330(k),
...
T(99,k) = A033419(k),
T(100,k) = A033420(k),
T(1000,k) = A033421(k),
T(10^4,k) = A033422(k),
T(10^5,k) = A033427(k),
T(10^6,k) = A033426(k),
T(10^7,k) = A033425(k),
T(10^8,k) = A033424(k),
T(10^9,k) = A033423(k).

Programs

  • Haskell
    a010766 = div
    a010766_row n = a010766_tabl !! (n-1)
    a010766_tabl = zipWith (map . div) [1..] a002260_tabl
    -- Reinhard Zumkeller, Apr 29 2015, Aug 13 2013, Apr 13 2012
    
  • Maple
    seq(seq(floor(n/k),k=1..n),n=1..20); # Robert Israel, Sep 01 2014
  • Mathematica
    Flatten[Table[Floor[n/k],{n,20},{k,n}]] (* Harvey P. Dale, Nov 03 2012 *)
  • PARI
    a(n)=t=floor((-1+sqrt(1+8*(n-1)))/2);(t+1)\(n-t*(t+1)/2) \\ Edward Jiang, Sep 10 2014
    
  • PARI
    T(n, k) = sum(i=1, n, (i % k) == 0); \\ Michel Marcus, Apr 08 2017

Formula

G.f.: 1/(1-x)*Sum_{k>=1} x^k/(1-y*x^k). - Vladeta Jovovic, Feb 05 2004
Triangle A010766 = A000012 * A051731 as infinite lower triangular matrices. - Gary W. Adamson, Oct 30 2007
Equals A000012 * A051731 as infinite lower triangular matrices. - Gary W. Adamson, Nov 14 2007
Let T(n,0) = n+1, then T(n,k) = (sum of the k preceding elements in the previous column) minus (sum of the k preceding elements in same column). - Mats Granvik, Gary W. Adamson, Feb 20 2010
T(n,k) = (n - A048158(n,k)) / k. - Reinhard Zumkeller, Aug 13 2013
T(n,k) = 1 + T(n-k,k) (where T(n-k,k) = 0 if n < 2*k). - Robert Israel, Sep 01 2014
T(n,k) = T(floor(n/k),1) if k>1; T(n,1) = 1 - Sum_{i=2..n} A008683(i)*T(n,i). If we modify the formula to T(n,1) = 1 - Sum_{i=2..n} A008683(i)*T(n,i)/i^s, where s is a complex variable, then the first column becomes the partial sums of the Riemann zeta function. - Mats Granvik, Apr 27 2016

Extensions

Cross references edited by Jason Kimberley, Nov 23 2016

A277646 Triangle T(n,k) = floor(n^2/k) for 1 <= k <= n^2, read by rows.

Original entry on oeis.org

1, 4, 2, 1, 1, 9, 4, 3, 2, 1, 1, 1, 1, 1, 16, 8, 5, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 25, 12, 8, 6, 5, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 36, 18, 12, 9, 7, 6, 5, 4, 4, 3, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 49, 24, 16, 12, 9, 8, 7, 6
Offset: 1

Views

Author

Jason Kimberley, Nov 09 2016

Keywords

Examples

			The first five rows of the triangle are:
1;
4, 2, 1, 1;
9, 4, 3, 2, 1, 1, 1, 1, 1;
16, 8, 5, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1;
25, 12, 8, 6, 5, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
		

Crossrefs

Cf. Related triangles: A010766, A277647, A277648.
Rows of this triangle (with infinite trailing zeros):
T(1,k) = A000007(k-1),
T(2,k) = A033324(k),
T(3,k) = A033329(k),
T(4,k) = A033336(k),
T(5,k) = A033345(k),
T(6,k) = A033356(k),
T(7,k) = A033369(k),
T(8,k) = A033384(k),
T(9,k) = A033401(k),
T(10,k) = A033420(k),
T(100,k) = A033422(k),
T(10^3,k) = A033426(k),
T(10^4,k) = A033424(k).
Columns of this triangle:
T(n,1) = A000290(n),
T(n,2) = A007590(n),
T(n,3) = A000212(n),
T(n,4) = A002620(n),
T(n,5) = A118015(n),
T(n,6) = A056827(n),
T(n,7) = A056834(n),
T(n,8) = A130519(n+1),
T(n,9) = A056838(n),
T(n,10)= A056865(n),
T(n,12)= A174709(n+2).

Programs

  • Magma
    A277646:=func;
    [A277646(n,k):k in[1..n^2],n in[1..7]];
  • Mathematica
    Table[Floor[n^2/k], {n, 7}, {k, n^2}] // Flatten (* Michael De Vlieger, Nov 24 2016 *)

Formula

T(n,k) = A010766(n^2,k).

A278101 Triangle T(n,k) = A277648(n,k)^2 * A005117(k), read by rows.

Original entry on oeis.org

1, 4, 2, 3, 9, 8, 3, 5, 6, 7, 16, 8, 12, 5, 6, 7, 10, 11, 13, 14, 15, 25, 18, 12, 20, 24, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 36, 32, 27, 20, 24, 28, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 49, 32, 48, 45, 24, 28, 40, 44, 13, 14, 15, 17, 19, 21, 22
Offset: 1

Views

Author

Jason Kimberley, Nov 15 2016

Keywords

Comments

Other that the first (with length 1), row n has length A278100(n).
Equivalently, the surd sqrt(T(n,k)) = A277648(n,k) * sqrt(A005117(k)).

Examples

			The first five rows are:
1;
4,  2,  3;
9,  8,  3,  5,  6,  7;
16,  8, 12,  5,  6,  7, 10, 11, 13, 14, 15;
25, 18, 12, 20, 24,  7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23;
		

References

  • R. B. Eggleton, J. S. Kimberley and J. A. MacDougall, Square-free rank of integers, submitted.

Crossrefs

Cf. A278103.

Programs

  • Magma
    A277647:=func;
    A278101_row:=funcA277647(n,j):j in[1..n^2]|IsSquarefree(j)]>;
    &cat[A278101_row(n):n in[1..8]];
  • Mathematica
    DeleteCases[#, 0] & /@ Table[Boole[SquareFreeQ@ k] k Floor[n/Sqrt@ k]^2, {n, 7}, {k, n^2}] // Flatten (* Michael De Vlieger, Nov 24 2016 *)

A278102 a(n) is the largest j such that A278101(n,k) strictly decreases for k=1..j.

Original entry on oeis.org

1, 2, 3, 2, 3, 4, 2, 4, 2, 3, 2, 3, 4, 2, 4, 2, 3, 2, 3, 4, 2, 5, 6, 5, 2, 2, 3, 2, 4, 4, 4, 2, 2, 3, 2, 3, 4, 4, 5, 2, 2, 2, 3, 5, 3, 5, 2, 2, 2, 3, 5, 2, 4, 4, 4, 2, 3, 4, 2, 4, 5, 4, 2, 3, 2, 2, 4, 5, 4, 3, 3, 2, 2, 3, 5, 4, 5, 2, 2, 2, 3, 2, 3, 4, 2, 2, 2, 3, 2, 3, 4, 6, 5, 2, 3, 2, 2, 4, 6, 6, 2, 3, 2
Offset: 1

Views

Author

Jason Kimberley, Nov 15 2016

Keywords

Crossrefs

This is the row length sequence for triangles A278103 and A278104.
A278106 lists first occurrences in this sequence.

Programs

  • Magma
    A277647:=func;
    A278101_row:=funcA277647(n,k):k in[1..n^2]|IsSquarefree(k)]>;
    A278102:=funcA278101_row(n) >;
    [A278102(n):n in[1..103]];
  • Mathematica
    Map[Length@ TakeWhile[FoldList[Function[s, Boole[s < 0] #2][#2 - #1] &, #], # > 0 &] &, #] &@ Map[DeleteCases[#, 0] &, Table[Boole[SquareFreeQ@ k] k Floor[n/Sqrt@ k]^2, {n, 23}, {k, n^2}] ] // Flatten (* Michael De Vlieger, Nov 24 2016 *)

A278112 Triangle T(n,k) = floor(n sqrt(2/k)) for 1 <= k <= 2n^2, read by rows.

Original entry on oeis.org

1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 4, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 5, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Jason Kimberley, Feb 09 2017

Keywords

Examples

			The first five rows are:
1, 1;
2, 2, 1, 1, 1, 1, 1, 1;
4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
5, 4, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
7, 5, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
		

Crossrefs

Cf. A277647.

Programs

  • Magma
    A278112:=func;
    [[A278112(n,k):k in[1..2*n^2]]:n in[1..5]];
  • Mathematica
    Table[Floor[n Sqrt[2/k]], {n, 5}, {k, 2 n^2}] // Flatten (* Michael De Vlieger, Feb 17 2017 *)

Formula

T(n,k) = A000196(A278111(n)).
T(n,k)sqrt(k) <= n sqrt(2) < (T(n,k)+1)sqrt(k).

A278103 Irregular triangle T(n,k) := A278101(n,k) for k = 1..A278102(n), read by rows.

Original entry on oeis.org

1, 4, 2, 9, 8, 3, 16, 8, 25, 18, 12, 36, 32, 27, 20, 49, 32, 64, 50, 48, 45, 81, 72, 100, 98, 75, 121, 98, 144, 128, 108, 169, 162, 147, 125, 196, 162, 225, 200, 192, 180, 256, 242, 289, 288, 243, 324, 288, 361, 338, 300, 400, 392, 363, 320, 441, 392, 484, 450, 432
Offset: 1

Views

Author

Jason Kimberley, Nov 15 2016

Keywords

Comments

Each row is the longest strictly decreasing prefix of the corresponding row of A278101.

Examples

			The first 23 rows are:
1;
4, 2;
9, 8, 3;
16, 8;
25, 18, 12;
36, 32, 27, 20;
49, 32;
64, 50, 48, 45;
81, 72;
100, 98, 75;
121, 98;
144, 128, 108;
169, 162, 147, 125;
196, 162;
225, 200, 192, 180;
256, 242;
289, 288, 243;
324, 288;
361, 338, 300;
400, 392, 363, 320;
441, 392;
484, 450, 432, 405, 384;
529, 512, 507, 500, 486, 448;
		

References

  • R. B. Eggleton, J. S. Kimberley and J. A. MacDougall, Square-free rank of integers, submitted.

Crossrefs

Programs

  • Magma
    A277647:=func;
    A278101_row:=funcA277647(n,k):k in[1..n^2]|IsSquarefree(k)]>;
    A278103_row:=funcA278101_row(n) >;
    &cat[A278103_row(n):n in[1..23]];
  • Mathematica
    Map[TakeWhile[FoldList[Function[s, Boole[s < 0] #2][#2 - #1] &, #], # > 0 &] &, #] &@ Map[DeleteCases[#, 0] &, Table[Boole[SquareFreeQ@ k] k Floor[n/Sqrt@ k]^2, {n, 23}, {k, n^2}] ] // Flatten (* Michael De Vlieger, Nov 24 2016 *)

Formula

T(n,k) = A278104(n,k) * A005117(k) where this triangle and A278104 both have row length sequence A278102.

A278104 Irregular triangle T(n,k) := A277648(n,k) for k = 1...A278102(n), read by rows.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 4, 2, 5, 3, 2, 6, 4, 3, 2, 7, 4, 8, 5, 4, 3, 9, 6, 10, 7, 5, 11, 7, 12, 8, 6, 13, 9, 7, 5, 14, 9, 15, 10, 8, 6, 16, 11, 17, 12, 9, 18, 12, 19, 13, 10, 20, 14, 11, 8, 21, 14, 22, 15, 12, 9, 8, 23, 16, 13, 10, 9, 8, 24, 16, 13, 10, 9, 25, 17, 26, 18, 27, 19, 15, 28, 19
Offset: 1

Views

Author

Jason Kimberley, Nov 15 2016

Keywords

Comments

This triangle lists the "descending sequences across ranks" of Eggleton et al.

Examples

			The first 23 rows are:
1;
2,  1;
3,  2,  1;
4,  2;
5,  3,  2;
6,  4,  3,  2;
7,  4;
8,  5,  4,  3;
9,  6;
10,  7,  5;
11,  7;
12,  8,  6;
13,  9,  7,  5;
14,  9;
15, 10,  8,  6;
16, 11;
17, 12,  9;
18, 12;
19, 13, 10;
20, 14, 11,  8;
21, 14;
22, 15, 12,  9,  8;
23, 16, 13, 10,  9,  8;
		

References

  • R. B. Eggleton, J. S. Kimberley and J. A. MacDougall, Square-free rank of integers, submitted.

Programs

  • Magma
    A277647:=func;
    A277648_row:=funcA277647(n,k):k in[1..n^2]|IsSquarefree(k)]>;
    A278101_row:=funcA277647(n,k)^2*k:k in[1..n^2]|IsSquarefree(k)]>;
    A278104_row:=funcA277648_row(n)[1..j]:j in[1..#row-1]|row[j]le row[j+1]}select dec else[1]) where row is A278101_row(n) >;
    &cat[A278104_row(n):n in[1..23]];
  • Mathematica
    Map[Last, #, {2}] &@ Map[TakeWhile[FoldList[Function[s, Boole[s < 0] {First@ #2, Last@ #2}][First@ #2 - First@ #1] &, #], Total@ # > 0 &] &, #] &@ Map[DeleteCases[#, {0, 0}] &, Table[Boole[SquareFreeQ@ k] {k #^2, #} &@ Floor[n/Sqrt@ k], {n, 32}, {k, n^2}] ] // Flatten (* Michael De Vlieger, Nov 24 2016 *)

A278108 Irregular triangle read by rows: T(n,k) = floor(n/k^2) for 1 <= k^2 <= n.

Original entry on oeis.org

1, 2, 3, 4, 1, 5, 1, 6, 1, 7, 1, 8, 2, 9, 2, 1, 10, 2, 1, 11, 2, 1, 12, 3, 1, 13, 3, 1, 14, 3, 1, 15, 3, 1, 16, 4, 1, 1, 17, 4, 1, 1, 18, 4, 2, 1, 19, 4, 2, 1, 20, 5, 2, 1, 21, 5, 2, 1, 22, 5, 2, 1, 23, 5, 2, 1, 24, 6, 2, 1, 25, 6, 2, 1, 1, 26, 6, 2, 1, 1, 27, 6, 3, 1, 1, 28, 7, 3, 1, 1, 29, 7, 3, 1, 1
Offset: 1

Views

Author

Jason Kimberley, Feb 01 2017

Keywords

Comments

The row length sequence is A000196.

Examples

			The first 27 rows are:
1;
2;
3;
4, 1;
5, 1;
6, 1;
7, 1;
8, 2;
9, 2, 1;
10, 2, 1;
11, 2, 1;
12, 3, 1;
13, 3, 1;
14, 3, 1;
15, 3, 1;
16, 4, 1, 1;
17, 4, 1, 1;
18, 4, 2, 1;
19, 4, 2, 1;
20, 5, 2, 1;
21, 5, 2, 1;
22, 5, 2, 1;
23, 5, 2, 1;
24, 6, 2, 1;
25, 6, 2, 1, 1;
26, 6, 2, 1, 1;
27, 6, 3, 1, 1;
		

Crossrefs

Programs

  • Magma
    [n div k^2:k in[1..Isqrt(n)],n in[1..27]];

A033432 a(n) = floor(1000/sqrt(n)).

Original entry on oeis.org

1000, 707, 577, 500, 447, 408, 377, 353, 333, 316, 301, 288, 277, 267, 258, 250, 242, 235, 229, 223, 218, 213, 208, 204, 200, 196, 192, 188, 185, 182, 179, 176, 174, 171, 169, 166, 164, 162, 160, 158, 156, 154, 152, 150, 149, 147, 145, 144, 142, 141, 140
Offset: 1

Views

Author

Keywords

Comments

This sequence is the 1000th row of triangle A277647. - Jason Kimberley, Nov 22 2016

Programs

  • Magma
    [Floor(1000/Sqrt(n)): n in [1..40]]; // Vincenzo Librandi, Aug 10 2011
    
  • Magma
    [Isqrt(10^6 div n):n in[1..40]]; // integer arithmetic - Jason Kimberley, Nov 12 2016
  • Mathematica
    Floor[1000/Sqrt[Range[60]]] (* Harvey P. Dale, Aug 09 2011 *)

Extensions

More terms from Erich Friedman
Showing 1-10 of 10 results.