A001047 a(n) = 3^n - 2^n.
0, 1, 5, 19, 65, 211, 665, 2059, 6305, 19171, 58025, 175099, 527345, 1586131, 4766585, 14316139, 42981185, 129009091, 387158345, 1161737179, 3485735825, 10458256051, 31376865305, 94134790219, 282412759265, 847255055011, 2541798719465, 7625463267259, 22876524019505
Offset: 0
References
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 86-87.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n=0..200
- A. Abdurrahman, CM Method and Expansion of Numbers, arXiv:1909.10889 [math.NT], 2019.
- Nathan Bliss, Ben Fulan, Stephen Lovett and Jeff Sommars, Strong divisibility, cyclotomic polynomials and iterated polynomials, Am. Math. Monthly, Vol. 120, No. 6 (2013), pp. 519-536.
- John Elias, Illustration: Sierpinski half-hexagons, Illustration: Nicomachus triangle 2^n & 3^n correlation, Koch Snowflake Fractal Configuration.
- Joël Gay, Representation of Monoids and Lattice Structures in the Combinatorics of Weyl Groups, Doctoral Thesis, Discrete Mathematics [cs.DM], Université Paris-Saclay, 2018.
- Samuele Giraudo, Combinatorial operads from monoids, Journal of Algebraic Combinatorics, Vol. 41, No. 2 (2015), pp. 493-538; arXiv preprint, arXiv preprint arXiv:1306.6938 [math.CO], 2013-2015.
- Samuele Giraudo, Pluriassociative algebras I: The pluriassociative operad, Advances in Applied Mathematics, Vol. 77 (2016), pp. 1-42; arXiv preprint, arXiv:1603.01040 [math.CO], 2016.
- Richard K. Guy, Letters to N. J. A. Sloane, June-August 1968
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 397.
- B. D. Josephson and J. M. Boardman, Problems Drive 1961, Eureka, The Journal of the Archimedeans, Vol. 24 (1961), p. 20; entire volume.
- Germain Kreweras, Inversion des polynômes de Bell bidimensionnels et application au dénombrement des relations binaires connexes, C. R. Acad. Sci. Paris Ser. A-B, Vol. 268 (1969), pp. A577-A579.
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- Richard Miles, Synchronization points and associated dynamical invariants, Trans. Amer. Math. Soc., Vol. 365, No. 10 (2013), pp. 5503-5524.
- Rajesh Kumar Mohapatra and Tzung-Pei Hong, On the Number of Finite Fuzzy Subsets with Analysis of Integer Sequences, Mathematics (2022) Vol. 10, No. 7, 1161.
- Jon Perry, Relation to Collatz problem.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Kalika Prasad, Munesh Kumari, Rabiranjan Mohanta, and Hrishikesh Mahato, The sequence of higher order Mersenne numbers and associated binomial transforms, arXiv:2307.08073 [math.NT], 2023.
- D. C. Santos, E. A. Costa, and P. M. M. C. Catarino, On Gersenne Sequence: A Study of One Family in the Horadam-Type Sequence, Axioms 14, 203, (2025). See p. 4.
- Ambrosio Valencia-Romero and P. T. Grogan, The strategy dynamics of collective systems: Underlying hindrances beyond two-actor coordination, PLOS ONE 19(4): e0301394 (S1 Appendix).
- Index entries for linear recurrences with constant coefficients, signature (5,-6).
Crossrefs
Programs
-
Haskell
a001047 n = a001047_list !! n a001047_list = map fst $ iterate (\(u, v) -> (3 * u + v, 2 * v)) (0, 1) -- Reinhard Zumkeller, Jun 09 2013
-
Magma
[3^n - 2^n: n in [0..30]]; // Vincenzo Librandi, Jul 17 2011
-
Maple
seq(3^n - 2^n, n=0..40); # Giorgio Balzarotti, Nov 18 2006 A001047:=1/(3*z-1)/(2*z-1); # Simon Plouffe in his 1992 dissertation, dropping the initial zero
-
Mathematica
Table[ 3^n - 2^n, {n, 0, 25} ] LinearRecurrence[{5, -6}, {0, 1}, 25] (* Harvey P. Dale, Aug 18 2011 *) Numerator@NestList[(3#+1)/2&,1/2,100] (* Zak Seidov, Oct 03 2011 *)
-
PARI
{a(n) = 3^n - 2^n};
-
Python
[3**n - 2**n for n in range(25)] # Ross La Haye, Aug 19 2005; corrected by David Radcliffe, Jun 26 2016
-
Sage
[lucas_number1(n, 5, 6) for n in range(26)] # Zerinvary Lajos, Apr 22 2009
Formula
G.f.: x/((1-2*x)*(1-3*x)).
a(n) = 5*a(n-1) - 6*a(n-2).
a(n) = 3*a(n-1) + 2^(n-1). - Jon Perry, Aug 23 2002
Starting 0, 0, 1, 5, 19, ... this is 3^n/3 - 2^n/2 + 0^n/6, the binomial transform of A086218. - Paul Barry, Aug 18 2003
a(n) = A083323(n)-1 = A056182(n)/2 = (A002783(n)-1)/2 = (A003063(n+2)-A003063(n+1))/2. - Ralf Stephan, Jan 12 2004
Binomial transform of A000225. - Ross La Haye, Feb 07 2005
a(n) = Sum_{k=0..n-1} binomial(n, k)*2^k. - Ross La Haye, Aug 20 2005
a(n) = 2^(2n) - A083324(n). - Ross La Haye, Sep 10 2005
a(n) = A112626(n, 1). - Ross La Haye, Jan 11 2006
E.g.f.: exp(3*x) - exp(2*x). - Mohammad K. Azarian, Jan 14 2009
a(n) = A217764(n,1). - Ross La Haye, Mar 27 2013
a(n) = 2*a(n-1) + 3^(n-1). - Toby Gottfried, Mar 28 2013
a(n) = Sum_{k=0..2} Stirling1(2,k)*(k+1)^n = c_2^{(-n)}, poly-Cauchy numbers. - Takao Komatsu, Mar 28 2013
a(n+1) = Sum_{k=0..n} 2^k*3^(n-k). - J. M. Bergot, Mar 27 2018
Sum_{n>=1} 1/a(n) = A329064. - Amiram Eldar, Nov 20 2020
a(n) = (1/2)*Sum_{k=0..n} binomial(n, k)*(2^(n-k) + 2^k - 2).
From Peter Bala, Jun 27 2025: (Start)
exp(Sum_{n >=1} a(2*n)/a(n)*x^n/n) = Sum_{n >= 0} a(n+1)*x^n.
exp(Sum_{n >=1} a(3*n)/a(n)*x^n/n) = 1 + 19*x + 247*x^2 + ... is the g.f. of A019443.
exp(Sum_{n >=1} a(4*n)/a(n)*x^n/n) = 1 + 65*x + 2743*x^2 + ... is the g.f. of A383754.
The following are all examples of telescoping series:
Sum_{n >= 1} 6^n/(a(n)*a(n+1)) = 2, since 6^n/(a(n)*a(n+1)) = b(n) - b(n+1), where b(n) = 2^n/a(n);
Sum_{n >= 1} 18^n/(a(n)*a(n+1)*a(n+2)) = 22/75, since 18^n/(a(n)*a(n+1)*a(n+2)) = c(n) - c(n+1), where c(n) = (5*6^n - 2*4^n)/(15*a(n)*a(n+1));
Sum_{n >= 1} 54^n/(a(n)*a(n+1)*a(n+2)*a(n+3)) = 634/48735 since 54^n/(a(n)*a(n+1)*a(n+2)*a(n+3)) = d(n) - d(n+1), where d(n) = (57*18^n - 38*12^n + 8*8^n)/(513*a(n)*a(n+1)*a(n+2)).
Sum_{n >= 1} 6^n/(a(n)*a(n+2)) = 14/25; Sum_{n >= 1} (-6)^n/(a(n)*a(n+2)) = -6/25.
Sum_{n >= 1} 6^n/(a(n)*a(n+3)) = 306/1805.
Sum_{n >= 1} 6^n/(a(n)*a(n+4)) = 4282/80275; Sum_{n >= 1} (-6)^n/(a(n)*a(n+4)) = -1698/80275. (End)
Extensions
Edited by Charles R Greathouse IV, Mar 24 2010
Comments