cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A104457 Decimal expansion of 1 + phi = phi^2 = (3 + sqrt(5))/2.

Original entry on oeis.org

2, 6, 1, 8, 0, 3, 3, 9, 8, 8, 7, 4, 9, 8, 9, 4, 8, 4, 8, 2, 0, 4, 5, 8, 6, 8, 3, 4, 3, 6, 5, 6, 3, 8, 1, 1, 7, 7, 2, 0, 3, 0, 9, 1, 7, 9, 8, 0, 5, 7, 6, 2, 8, 6, 2, 1, 3, 5, 4, 4, 8, 6, 2, 2, 7, 0, 5, 2, 6, 0, 4, 6, 2, 8, 1, 8, 9, 0, 2, 4, 4, 9, 7, 0, 7, 2, 0, 7, 2, 0, 4, 1, 8, 9, 3, 9, 1, 1, 3, 7, 4, 8
Offset: 1

Views

Author

Eric W. Weisstein, Mar 08 2005

Keywords

Comments

Only first term differs from the decimal expansion of phi.
Zelo extends work of D. Roy by showing that the square of the golden ratio is the optimal exponent of approximation by algebraic numbers of degree 4 with bounded denominator and trace. - Jonathan Vos Post, Mar 02 2009 (Cf. last sentence in the Zelo reference. - Joerg Arndt, Jan 04 2014)
Hawkes asks: "What two numbers are those whose product, difference of their squares, and the ratio or quotient of their cubes, are all equal to each other?". - Charles R Greathouse IV, Dec 11 2012
This is the case n=10 in (Gamma(1/n)/Gamma(3/n))*(Gamma((n-1)/n)/Gamma((n-3)/n)) = 1+2*cos(2*Pi/n). - Bruno Berselli, Dec 14 2012
An algebraic integer of degree 2, with minimal polynomial x^2 - 3x + 1. - Charles R Greathouse IV, Nov 12 2014 [The other root is 2 - phi = A132338 - Wolfdieter Lang, Aug 29 2022]
To eight digits: 5*(((Pi+1)/e)-1) = 2.61803395481182... - Dan Graham, Nov 21 2017
The ratio diagonal/side of the second smallest diagonal in a regular 10-gon. - Mohammed Yaseen, Nov 04 2020
phi^2/10 is the moment of inertia of a solid regular icosahedron with a unit mass and a unit edge length (see A341906). - Amiram Eldar, Jun 08 2021

Examples

			2.6180339887498948482045868343656381177203091798...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.17.1, p. 153.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 138-139.
  • Damien Roy. Diophantine Approximation in Small Degree. Centre de Recherches Mathématiques. CRM Proceedings and Lecture Notes. Volume 36 (2004), 269-285.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 45.

Crossrefs

2 + 2*cos(2*Pi/n): A116425 (n = 7), A332438 (n = 9), A296184 (n = 10), A019973 (n = 12).

Programs

Formula

Equals 2 + A094214 = 1 + A001622. - R. J. Mathar, May 19 2008
Satisfies these three equations: x-sqrt(x)-1 = 0; x-1/sqrt(x)-2 = 0; x^2-3*x+1 = 0. - Richard R. Forberg, Oct 11 2014
Equals the nested radical sqrt(phi^2+sqrt(phi^4+sqrt(phi^8+...))). For a proof, see A094885. - Stanislav Sykora, May 24 2016
From Christian Katzmann, Mar 19 2018: (Start)
Equals Sum_{n>=0} (5*(2*n)!+8*n!^2)/(2*n!^2*3^(2*n+1)).
Equals 3/2 + Sum_{n>=0} 5*(2*n)!/(2*n!^2*3^(2*n+1)). (End)
Equals 1/A132338 = 2*A239798 = 5*A229780. - Mohammed Yaseen, Nov 04 2020
Equals Product_{k>=1} 1 + 1/(phi + phi^k), where phi is the golden ratio (A001622) (Ohtsuka, 2018). - Amiram Eldar, Dec 02 2021
c^n = phi * A001906(n) + A001519(n), where c = phi^2. - Gary W. Adamson, Sep 08 2023
Equals lim_{n->oo} S(n, 3)/S(n-1, 3) with the S-Chebyshev polynomials (see A049310), S(3, n) = A000045(2*(n+1)) = A001906(n+1). - Wolfdieter Lang, Nov 15 2023
From Peter Bala, May 08 2024: (Start)
Constant c = 2 + 2*cos(2*Pi/5).
The linear fractional transformation z -> c - c/z has order 5, that is, z = c - c/(c - c/(c - c/(c - c/(c - c/z)))). (End)
Equals Product_{k>=1} (1 + 1/A032908(k)). - Amiram Eldar, Nov 28 2024

A130880 Decimal expansion of 2*sin(Pi/18).

Original entry on oeis.org

3, 4, 7, 2, 9, 6, 3, 5, 5, 3, 3, 3, 8, 6, 0, 6, 9, 7, 7, 0, 3, 4, 3, 3, 2, 5, 3, 5, 3, 8, 6, 2, 9, 5, 9, 2, 0, 0, 0, 7, 5, 1, 3, 5, 4, 3, 6, 8, 1, 3, 8, 7, 7, 4, 4, 7, 2, 4, 8, 2, 7, 5, 6, 2, 6, 4, 1, 3, 1, 6, 4, 4, 2, 7, 8, 0, 2, 9, 4, 7, 0, 8, 4, 3, 0, 3, 3, 2, 2, 6, 3, 1, 4, 7, 9, 9, 1, 4, 8, 0, 2, 3, 9, 1, 8
Offset: 0

Views

Author

R. J. Mathar, Jul 26 2007

Keywords

Comments

Also: a bond percolation threshold probability on the triangular lattice.
Also: the edge length of a regular 18-gon with unit circumradius. Such an m-gon is not constructible using a compass and a straightedge (see A004169). With an even m, in fact, it would be constructible only if the (m/2)-gon were constructible, which is not true in this case (see A272488). - Stanislav Sykora, May 01 2016

Examples

			0.347296355333860697703433253538629592...
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 207.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.18.1, p. 373.

Crossrefs

Edge lengths of nonconstructible n-gons: A272487 (n=7), A272488 (n=9), A272489 (n=11), A272490 (n=13), A255241 (n=14), A272491 (n=19). - Stanislav Sykora, May 01 2016

Programs

  • Mathematica
    RealDigits[N[2Sin[Pi/18], 100]][[1]] (* Robert Price, May 01 2016 *)
  • PARI
    2*sin(Pi/18)

Formula

Equals 2*A019819 = A019829/A019889.
Algebraic number with minimal polynomial over Q equal to x^3 - 3*x + 1, a cyclic cubic, having zeros 2*sin(Pi/18) (= 2*cos(4*Pi/9)), 2*sin(5*Pi/18) (= 2*cos(2*Pi/9)) and -2*sin(7*Pi/18) (= -2*cos(Pi/9)). Cf. A332437. - Peter Bala, Oct 23 2021
Equals 2 + rho(9) - rho(9)^2, an element of the extension field Q(rho(9)), with rho(9) = 2*cos(Pi/9) = A332437 with minimal polynomial x^3 - 3*x - 1 over Q. - Wolfdieter Lang, Sep 20 2022
Equals -1 + Product_{k>=3} (1 - (-1)^k/A063289(k)). - Amiram Eldar, Nov 22 2024
Equals A133749/2 = 1 - A178959. - Hugo Pfoertner, Dec 15 2024

A296184 Decimal expansion of 2 + phi, with the golden section phi from A001622.

Original entry on oeis.org

3, 6, 1, 8, 0, 3, 3, 9, 8, 8, 7, 4, 9, 8, 9, 4, 8, 4, 8, 2, 0, 4, 5, 8, 6, 8, 3, 4, 3, 6, 5, 6, 3, 8, 1, 1, 7, 7, 2, 0, 3, 0, 9, 1, 7, 9, 8, 0, 5, 7, 6, 2, 8, 6, 2, 1, 3, 5, 4, 4, 8, 6, 2, 2, 7, 0, 5, 2, 6, 0, 4, 6, 2, 8, 1, 8, 9
Offset: 1

Views

Author

Wolfdieter Lang, Jan 08 2018

Keywords

Comments

In a regular pentagon, inscribed in a unit circle this equals twice the largest distance between a vertex and a midpoint of a side.
This is an integer in the quadratic number field Q(sqrt(5)).
Only the first digit differs from A001622.

Examples

			3.618033988749894848204586834365638117720309179805762862135448622705260462...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.25, p. 417.

Crossrefs

2 + 2*cos(2*Pi/n): A104457 (n = 5), A116425 (n = 7), A332438 (n = 9), A019973 (n = 12).

Programs

Formula

Equals 2 + A001622 = 1 + A104457 = 3 + A094214.
From Christian Katzmann, Mar 19 2018: (Start)
Equals Sum_{n>=0} (15*(2*n)!+40*n!^2)/(2*n!^2*3^(2*n+2)).
Equals 5/2 + Sum_{n>=0} 5*(2*n)!/(2*n!^2*3^(2*n+1)). (End)
Constant c = 2 + 2*cos(2*Pi/10). The linear fractional transformation z -> c - c/z has order 10, that is, z = c - c/(c - c/(c - c/(c - c/(c - c/(c - c/(c - c/(c - c/(c - c/(c - c/(z)))))))))). - Peter Bala, May 09 2024

A094829 Number of (s(0), s(1), ..., s(2n+1)) such that 0 < s(i) < 9 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n+1, s(0) = 1, s(2n+1) = 6.

Original entry on oeis.org

1, 6, 27, 109, 417, 1548, 5644, 20349, 72846, 259579, 922209, 3269889, 11579032, 40967400, 144863001, 512050438, 1809503019, 6393427173, 22587086305, 79791176292, 281856708180, 995606748757, 3516721295214
Offset: 2

Views

Author

Herbert Kociemba, Jun 13 2004

Keywords

Comments

In general, a(n) = (2/m)*Sum_{r=1..m-1} sin(r*j*Pi/m)*sin(r*k*Pi/m)*(2*cos(r*Pi/m))^(2n+1) counts (s(0), s(1), ..., s(2n+1)) such that 0 < s(i) < m and |s(i)-s(i-1)| = 1 for i = 1,2,...,2n+1, s(0) = j, s(2n+1) = k.
a(n)/a(n-1) tends to 3.53208888...; = 2 + 2*cos(2*Pi/9) = A332438. - Gary W. Adamson, May 29 2008
From Wolfdieter Lang, Mar 27 2020: (Start)
The explicit form is written in terms of r = rho(9) = 2*cos(Pi/9) = A332437 as a Binet - de Moivre type formula a(n+2) = r^(2*(n+1))*(A(r) + Bp(r)*Cp(r)^(n+1)) + Bm(r)*Cm(r)^(n+1)), with A(r) = (1/9)*(2 + 5*r -r^2), approx. 0.87387081, Bp(r) = (1/18)*((14*r^2 - 5*r - 42)*sqrt(3*(3*r + 1)*(r - 1)) + r^2 - 5*r - 2) = (1/9)*(8 - r - 4*r^2), approx. -0.88974898, Cp(r) = (1/2)*(9*r^2 - 3*r - 26)*(3*r - 1 + sqrt(3*(3*r+1)*(r-1))) = 32 + 4*r - 11*r^2, approx. 0.66456322, Bm(r) = (1/18)*(-(14*r^2 - 5*r - 42)*sqrt(3*(3*r + 1)*(r - 1)) + r^2 - 5*r - 2) = (1/9)*(-10 -4*r + 5*r^2), approx. 0.01587816, and Cm(r) = (1/2)*(9*r^2 - 3*r - 26)*(3*r - 1 - sqrt(3*(3*r + 1)*(r - 1))) = 21 + 2*r - 7*r^2, approx. 0.03414828, for n >= 0.
Proof by partial fraction decomposition of the g.f. using the roots of 1 - 6*x + 9*x^2 - x^3 written in terms of r, which are X1(r) = 1/r^2 = 9 + r - 3*r^2, approx. 0.28311858, Xp(r) = (r/2)*(3*r - 1 + sqrt((3*(3*r+1))*(r-1))) = 1 + 2*r + r^2, approx. 8.29085937, Xm(r) = (r/2)*(3*r - 1 - sqrt((3*(3*r + 1))*(r - 1))) = -1 - 3*r + 2*r^2, approx. 0.42602205. Xp(r)*Xm(r) = r^2. The reduction with the minimal polynomial of r = rho(9), i.e., C(9, x) = x^3 - 3*x - 1 (see A187360) has been used to avoid all powers of r larger than 2. The reciprocal roots turn out to be the roots of the minimal polynomial of r^2, see A332438. 1/X1(r) = r^2, 1/Xp(r) = 2 - r, and 1/Xm(r) = 4 + r - r^2.
This proves the above stated limit of a(n+3)/a(n+2) for n to infinity, namely r^2 = A332438, approx. 3.53208889.
(End)

Crossrefs

Programs

  • Mathematica
    Drop[CoefficientList[Series[x^2/(1 - 6 x + 9 x^2 - x^3), {x, 0, 24}], x], 2] (* Michael De Vlieger, Aug 05 2021 *)

Formula

a(n) = (2/9)*Sum_{r=1..8} sin(r*Pi/9)*sin(2*r*Pi/3)*(2*cos(r*Pi/9))^(2*n+1), for n >= 2.
a(n) = 6*a(n-1) - 9*a(n-2) + a(n-3).
G.f.: x^2/(1 - 6x + 9x^2 - x^3).
For the explicit form of a(n+2), for n >= 0, see a comment above. - Wolfdieter Lang, Mar 26 2020

A116425 Decimal expansion of 2 + 2*cos(2*Pi/7).

Original entry on oeis.org

3, 2, 4, 6, 9, 7, 9, 6, 0, 3, 7, 1, 7, 4, 6, 7, 0, 6, 1, 0, 5, 0, 0, 0, 9, 7, 6, 8, 0, 0, 8, 4, 7, 9, 6, 2, 1, 2, 6, 4, 5, 4, 9, 4, 6, 1, 7, 9, 2, 8, 0, 4, 2, 1, 0, 7, 3, 1, 0, 9, 8, 8, 7, 8, 1, 9, 3, 7, 0, 7, 3, 0, 4, 9, 1, 2, 9, 7, 4, 5, 6, 9, 1, 5, 1, 8, 8, 5, 0, 1, 4, 6, 5, 3, 1, 7, 0, 7, 4, 3, 3, 3, 4, 1, 1
Offset: 1

Views

Author

Eric W. Weisstein, Feb 15 2006

Keywords

Comments

A root of the equation x^3 - 5*x^2 + 6*x - 1 = 0. - Arkadiusz Wesolowski, Jan 13 2016
The other two roots of this minimal polynomial of the present algebraic number (rho(7))^2, with rho(7) = 2*cos(Pi/7) = A160389 are (2*cos(3*Pi/7))^2 = (A255241)^2 and (2*cos(5*Pi/7))^2 = (-A255249)^2. - Wolfdieter Lang, Mar 30 2020

Examples

			3.246979603717467061...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.25 Tutte-Beraha Constants, p. 417.

Crossrefs

2 + 2*cos(2*Pi/n): A104457 (n = 5), A332438 (n = 9), A296184 (n = 10), A019973 (n = 12).

Programs

Formula

Equals (2*cos(Pi/7))^2 = (A160389)^2.
Equals 2 + i^(4/7) - i^(10/7). - Peter Luschny, Apr 04 2020
Let c = 2 + 2*cos(2*Pi/7). The linear fractional transformation z -> c - c/z has order 7, that is, z = c - c/(c - c/(c - c/(c - c/(c - c/(c - c/(c - c/z)))))). - Peter Bala, May 09 2024

A332437 Decimal expansion of 2*cos(Pi/9).

Original entry on oeis.org

1, 8, 7, 9, 3, 8, 5, 2, 4, 1, 5, 7, 1, 8, 1, 6, 7, 6, 8, 1, 0, 8, 2, 1, 8, 5, 5, 4, 6, 4, 9, 4, 6, 2, 9, 3, 9, 8, 7, 2, 4, 1, 6, 2, 6, 8, 5, 2, 8, 9, 2, 9, 2, 6, 6, 1, 8, 0, 5, 7, 3, 3, 2, 5, 5, 4, 8, 4, 4, 2, 4, 2, 1, 9, 9, 1, 7, 7, 8, 9, 1, 7, 8, 9, 9, 4, 9, 1, 7, 7, 9, 6, 7, 5, 8, 9, 6, 1, 3, 4, 9
Offset: 1

Views

Author

Wolfdieter Lang, Mar 27 2020

Keywords

Comments

This algebraic number called rho(9) of degree 3 = A055034(9) has minimal polynomial C(9, x) = x^3 - 3*x - 1 (see A187360).
rho(9) gives the length ratio diagonal/side of the smallest diagonal in the regular 9-gon.
The length ratio diagonal/side of the second smallest and the third smallest (or the largest) diagonal in the regular 9-gon are rho(9)^2 - 1 = A332438 - 1 and rho(9) + 1, respectively. - Mohammed Yaseen, Oct 31 2020

Examples

			rho(9) = 1.87938524157181676810821855464946293987241626852892926618...
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 207.

Crossrefs

Programs

  • Mathematica
    RealDigits[2 * Cos[Pi/9], 10, 100][[1]] (* Amiram Eldar, Mar 27 2020 *)
  • PARI
    2*cos(Pi/9) \\ Michel Marcus, Mar 28 2020

Formula

rho(9) = 2*cos(Pi/9).
Equals (-1)^(-1/9)*((-1)^(1/9) - i)*((-1)^(1/9) + i). - Peter Luschny, Mar 27 2020
Equals 2*A019879. - Michel Marcus, Mar 28 2020
Equals sqrt(A332438). - Mohammed Yaseen, Oct 31 2020
From Peter Bala, Oct 20 2021: (Start)
The zeros of x^3 - 3*x - 1 are r_1 = -2*cos(2*Pi/9), r_2 = -2*cos(4*Pi/9) and r_3 = -2*cos(8*Pi/9) = 2*cos(Pi/9).
The polynomial x^3 - 3*x - 1 is irreducible over Q (since it is irreducible mod 2) with discriminant equal to 3^4, a square. It follows that the Galois group of the number field Q(2*cos(Pi/9)) over Q is cyclic of order 3.
The mapping r -> 2 - r^2 cyclically permutes the zeros r_1, r_2 and r_3. The inverse cyclic permutation is given by r -> r^2 - r - 2.
The first differences r_1 - r_2, r_2 - r_3 and r_3 - r_1 are the zeros of the cyclic cubic polynomial x^3 - 9*x - 9 of discriminant 3^6.
First quotient relations:
r_1/r_2 = 1 + (r_3 - r_1); r_2/r_3 = 1 + (r_1 - r_2); r_3/r_1 = 1 + (r_2 - r_3);
r_2/r_1 = (r_3 - r_2) - 2; r_3/r_2 = (r_1 - r_3) - 2; r_1/r_3 = (r_2 - r_1) - 2;
r_1/r_2 + r_2/r_3 + r_3/r_1 = 3; r_2/r_1 + r_3/r_2 + r_1/r_3 = -6.
Thus the first quotients r_1/r_2, r_2/r_3 and r_3/r_1 are the zeros of the cyclic cubic polynomial x^3 - 3*x^2 - 6*x - 1 of discriminant 3^6. See A214778.
Second quotient relations:
(r_1*r_2)/(r_3^2) = 3*r_2 - 6*r_1 - 8, with two other similar relations by cyclically permuting the 3 zeros. The three second quotients are the zeros of the cyclic cubic polynomial x^3 + 24*x^2 + 3*x - 1 of discriminant 3^10.
(r_1^2)/(r_2*r_3) = 1 - 3*(r_2 + r_3), with two other similar relations by cyclically permuting the 3 zeros. (End)
Equals i^(2/9) + i^(-2/9). - Gary W. Adamson, Jun 25 2022
Equals Re((4+4*sqrt(3)*i)^(1/3)). - Gerry Martens, Mar 19 2024
From Amiram Eldar, Nov 22 2024: (Start)
Equals Product_{k>=1} (1 - (-1)^k/A056020(k)).
Equals 1 + Product_{k>=1} (1 + (-1)^k/A156638(k)). (End)

A094256 Expansion of x / ( (x-1)*(x^3 - 9*x^2 + 6*x - 1) ).

Original entry on oeis.org

1, 7, 34, 143, 560, 2108, 7752, 28101, 100947, 360526, 1282735, 4552624, 16131656, 57099056, 201962057, 714012495, 2523515514, 8916942687, 31504028992, 111295205284, 393151913464, 1388758662221, 4905479957435, 17327203698086, 61202661233823, 216176614077600
Offset: 1

Views

Author

Gary W. Adamson, Apr 25 2004

Keywords

Comments

Previous name was: Let M = the 4 X 4 matrix [0 1 0 0 / 0 0 1 0 / 0 0 0 1 / -1 10 -15 7]. Perform M^n * [1 0 0 0] = [p q r s]. Then a(n-3), a(n-2), a(n-1), a(n) = -p, -q, -r, -s respectively.
a(n)/a(n-1) tends to 3.53208888624... = 4*cos^2(Pi/9), which is an eigenvalue of the matrix and a root of the polynomial x^4 - 6x^3 + 15x^2 -10x + 1 = 0 (having roots 4*cos^2(r*Pi/9), with r = 1,2,3,4).
Number of (s(0), s(1), ..., s(2n+4)) such that 0 < s(i) < 9 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n+4, s(0) = 1, s(2n+4) = 7. - Herbert Kociemba, Jun 13 2004
From Wolfdieter Lang, Mar 27 2020: (Start)
This sequence, with offset -5, starting with -85, -10, -1, 0, 0, 0, 1, 7, ... appears in the formula for the n-th power of the 4 X 4 tridiagonal matrix given in A332602 as M_4 = matrix([1,1,0,0], [1,2,1,0], [0,1,2,1], [0,0,1,2]): (M_4)^n = a(n-2)*(M_4)^3 + b(n)*(M_4)^2 + c(n)*M_4 - a(n-3)*1_4, for n >= 0, with the 4 X 4 unit Matrix 1_4, b(n) = -15*a(n-3) + 10*a(n-4) - a(n-5), and c(n) = 10*a(n-3) - a(n-4). Proof from the characteristc polynomial of M_4 (see a comment in A332602) and the Cayley-Hamilton theorem.
From the proof that A094829(n+3)/A094829(n+2) -> rho(9)^2 = A332438 for n-> infinitiy, with rho(9) = 2*cos(Pi/9) = A332437 (see a comment in A094829), and a formula given below the same limit is obtained for a(n+1)/a(n) for n -> infinity, as stated in a comment above. (End)

Examples

			a(2), a(3), a(4), a(5) = 7, 34, 143, 560, since M^5 * [1 0 0 0] = [ -7 -34 -143 -560].
Cayley-Hamilton: (M_4)^5 = a(3)*(M_4)^3 + b(5)*(M_4)^2 + c(5)*M_4 - a(2)*1_4 = 34*(M_4)^3 - 95*(M_4)^2 + 69*M_4 - 7*1_4. - _Wolfdieter Lang_, Mar 27 2020
		

References

  • C. V. Durell and A. Robson, "Advanced Trigonometry", Dover 2003, p. 216.

Crossrefs

a(n) = A005023(n-1), n > 1. - R. J. Mathar, Sep 05 2008

Programs

  • Magma
    I:=[1,7,34,143]; [n le 4 select I[n] else 7*Self(n-1) - 15*Self(n-2) + 10*Self(n-3) - Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jul 25 2015
    
  • Mathematica
    Table[ (MatrixPower[{{0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}, {-1, 10, -15, 7}}, n].{-1, 0, 0, 0})[[4]], {n, 24}] (* Robert G. Wilson v, Apr 28 2004 *)
    LinearRecurrence[{7, -15, 10, -1}, {1, 7, 34, 143}, 40] (* Vincenzo Librandi, Jul 25 2015 *)
  • PARI
    Vec(x / ( (x-1)*(x^3-9*x^2+6*x-1) ) + O(x^30)) \\ Michel Marcus, Jul 25 2015

Formula

From Herbert Kociemba, Jun 13 2004: (Start)
a(n) = (2/9)*Sum_{r=1..8} sin(r*Pi/9)*sin(7*r*Pi/9)*(2*cos(r*Pi/9))^(2n+4).
a(n) = 7*a(n-1) - 15*a(n-2) + 10*a(n-3) - a(n-4).
G.f.: x / ( (x-1)*(x^3 - 9*x^2 + 6*x - 1) ). (End)
3*a(n) = 1 - A094829(n+2) + 8*A094829(n+1) - A094829(n). - R. J. Mathar, Jun 29 2012 [offset corrected, and A094829(1) = 0. - Wolfdieter Lang, Mar 27 2020]
a(n) = (1/3)*(1 + 2*A094829(n+1) + 8*A094829(n) - A094829(n-1)), for n >= 1, with A094829(1) and A094829(0) = 0. - Wolfdieter Lang, Mar 27 2020

Extensions

More terms from Robert G. Wilson v, Apr 28 2004
a(25)-a(26) from Vincenzo Librandi, Jul 25 2015
New name (using g.f. from Herbert Kociemba) from Joerg Arndt, Jul 25 2015

A080938 Number of Catalan paths (nonnegative, starting and ending at 0, step +-1) of 2*n steps with all values less than or equal to 7.

Original entry on oeis.org

1, 1, 2, 5, 14, 42, 132, 429, 1429, 4846, 16645, 57686, 201158, 704420, 2473785, 8704089, 30664890, 108126325, 381478030, 1346396146, 4753200932, 16783118309, 59266297613, 209302921830, 739203970773, 2610763825782, 9221050139566, 32568630376132
Offset: 0

Views

Author

Henry Bottomley, Feb 25 2003

Keywords

Comments

From Wolfdieter Lang, Mar 27 2020: (Start)
a(n) also gives the upper left entry of the n-th power of the 4 X 4 tridiagonal matrix M_4, given in A332602: M_4 = Matrix([1,1,0,0], [1,2,1,0], [0,1,2,1], [0,0,1,2]): a(n) = (M_4)^n[1,1]. Proof from the formula for (M_4)^n, given in a comment in A094256, derived from the Cayley-Hamilton theorem, which leads to the recurrence. The formula for a(n) in terms of A094256 is given below.
For A094256(n+1)/A094256(n), like for A094829(n+1)/A094829(n), the limit for n -> infinity is rho(9)^2 = A332438 = 3.53208888..., with rho(9) = 2*cos(Pi/9) = A332437. Therefore the formula of a(n) in terms of A094256 shows that the same limit is reached for a(n+1)/a(n). See this conjecture by Gary W. Adamson in A332602.
(End)

Examples

			1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 + 429*x^7 + ...
		

Crossrefs

Cf. A000007, A000012, A011782, A001519, A007051, A080937, A024175, A033191 which essentially provide the same sequence for different limits and tend to A000108.
Cf. A211216, A094826 (first differences), A094829, A094829, A332602, A332437, A332438.

Programs

  • Magma
    I:=[1,1,2,5]; [n le 4 select I[n] else 7*Self(n-1)-15*Self(n-2)+10*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Nov 30 2018
  • Mathematica
    CoefficientList[Series[(1 - 2 x) (2 x^2 - 4 x + 1) / ((x - 1) (x^3 - 9 x^2 + 6 x - 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 30 2018 *)
    LinearRecurrence[{7, -15, 10, -1}, {1, 1, 2, 5}, 30] (* Jean-François Alcover, Jan 07 2019 *)
  • PARI
    {a(n) = local(A); A = 1; for( i=1, 7, A = 1 / (1 - x*A)); polcoeff( A + x * O(x^n), n)} /* Michael Somos, May 12 2012 */
    

Formula

a(n) = A080934(n,7).
G.f.: -(2*x - 1)*(2*x^2 - 4*x + 1) / ( (x - 1)*(x^3 - 9*x^2 + 6*x - 1) ). - Ralf Stephan, May 13 2003
a(n) = 7*a(n-1) - 15*a(n-2) + 10*a(n-3) - a(n-4). - Herbert Kociemba, Jun 13 2004
G.f.: 1 / (1 - x / (1 - x / (1 - x / (1 - x / (1 - x / (1 - x / (1 - x))))))). - Michael Somos, May 12 2012
a(n) = 5*b(n-2) - 21*b(n-3) + 19*b(n-4) - 2*b(n-5), for n >= 0, with b(n) = A094256(n), for n >= -5. See a comment in A094256 for this offset, and the above comment. - Wolfdieter Lang, Mar 28 2020

A063289 Dimension of the space of weight n cuspidal newforms for Gamma_1( 16 ).

Original entry on oeis.org

-1, 2, 7, 11, 16, 20, 25, 29, 34, 38, 43, 47, 52, 56, 61, 65, 70, 74, 79, 83, 88, 92, 97, 101, 106, 110, 115, 119, 124, 128, 133, 137, 142, 146, 151, 155, 160, 164, 169, 173, 178, 182, 187, 191, 196, 200, 205, 209, 214, 218, 223, 227, 232, 236
Offset: 2

Views

Author

N. J. A. Sloane, Jul 14 2001

Keywords

Comments

It appears that for n > 2 a(n) = floor((9n-22)/2). - Gary Detlefs, Mar 02 2010

Crossrefs

Cf. A063232, A063233, A017185 (bisection), A130880, A332438.

Programs

  • Mathematica
    Join[{-1}, Table[9*n/2 + (-1)^n/4 - 45/4, {n, 3, 60}]] (* Amiram Eldar, Jan 12 2024 *)

Formula

a(n) = 9*n/2 + (-1)^n/4 - 45/4 for n >= 3, with first differences in A010710. - R. J. Mathar, Dec 06 2010
From M. F. Hasler, Mar 05 2012: (Start)
G.f.: x^2*(-1 + 3*x + 6*x^2 + x^3)/(1 - x - x^2 + x^3).
a(n+2) = a(n)+9 (n>2), a(2n+1) = a(2n)+4 (n>1), a(2n) = a(2n-1)+5 (n>1). (End)
Sum_{n>=3} (-1)^(n+1)/a(n) = cot(2*Pi/9)*Pi/9. - Amiram Eldar, Jan 12 2024
From Amiram Eldar, Nov 22 2024: (Start)
Product_{n>=3} (1 - (-1)^n/a(n)) = 2*sin(Pi/18) + 1 (= A130880 + 1).
Product_{n>=3} (1 + (-1)^n/a(n)) = (1/2) * sec(Pi/9) (= A332438 - 3). (End)

A178959 Decimal expansion of the site percolation threshold for the (3,6,3,6) Kagome Archimedean lattice.

Original entry on oeis.org

6, 5, 2, 7, 0, 3, 6, 4, 4, 6, 6, 6, 1, 3, 9, 3, 0, 2, 2, 9, 6, 5, 6, 6, 7, 4, 6, 4, 6, 1, 3, 7, 0, 4, 0, 7, 9, 9, 9, 2, 4, 8, 6, 4, 5, 6, 3, 1, 8, 6, 1, 2, 2, 5, 5, 2, 7, 5, 1, 7, 2, 4, 3, 7, 3, 5, 8, 6, 8, 3, 5, 5, 7, 2, 1, 9, 7, 0, 5, 2, 9, 1, 5, 6, 9, 6, 6, 7, 7, 3, 6, 8, 5, 2, 0, 0, 8, 5, 1, 9, 7, 6
Offset: 0

Views

Author

Jonathan Vos Post, Dec 22 2012

Keywords

Comments

Consider an infinite graph where vertices are selected with probability p. The site percolation threshold is a unique value p_c such that if p > p_c an infinite connected component of selected vertices will almost surely exist, and if p < p_c an infinite connected component will almost surely not exist. This sequence gives p_c for the (3,6,3,6) Kagome Archimedean lattice.
This is one of the three real roots of x^3 - 3x^2 + 1. The other roots are 1 + A332437 = 2.879385241... and -(A332438 - 3) = - 0.5320888862... . - Wolfdieter Lang, Dec 13 2022

Examples

			0.652703644666139302296566746461370407999248645631861225527517243735868355...
		

Crossrefs

Programs

Formula

Equals 1 - 2*sin(Pi/18) = 1 = 1 - 2*cos(4*Pi/9) = 1 - A130880.

Extensions

a(98) corrected and more terms from Georg Fischer, Jun 06 2024
Showing 1-10 of 11 results. Next