cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A002294 a(n) = binomial(5*n, n)/(4*n + 1).

Original entry on oeis.org

1, 1, 5, 35, 285, 2530, 23751, 231880, 2330445, 23950355, 250543370, 2658968130, 28558343775, 309831575760, 3390416787880, 37377257159280, 414741863546285, 4628362722856425, 51912988256282175, 584909606696793885, 6617078646960613370
Offset: 0

Views

Author

Keywords

Comments

From Wolfdieter Lang, Sep 14 2007: (Start)
a(n), n >= 1, enumerates quintic trees (rooted, ordered, incomplete) with n vertices (including the root).
This is the Pfaff-Fuss-Catalan sequence C^{m}_n for m = 5. See the Graham et al. reference, p. 347. eq. 7.66. See also the Pólya-Szegő reference.
Also 5-Raney sequence. See the Graham et al. reference, pp. 346-347. (End)
a(n) = A258708(3*n, 2*n) for n > 0. - Reinhard Zumkeller, Jun 23 2015
Conjecturally, a(n) is the number of 4-uniform words on the alphabet [n] that avoid the patterns 231 and 221 (see the Defant and Kravitz link). - Colin Defant, Sep 26 2018
From Stillwell (1995), p. 62: "Eisenstein's Theorem. If y^5 + y = x, then y has a power series expansion y = x - x^5 + 10*x^9/2^1 - 15 * 14 * x^13/3! + 20 * 19 * 18*x^17/4! - ...." - Michael Somos, Sep 19 2019
a(n) is the total number of down steps before the first up step in all 4_1-Dyck paths of length 5*n. A 4_1-Dyck path is a lattice path with steps (1, 4), (1, -1) that starts and ends at y = 0 and stays above the line y = -1. - Sarah Selkirk, May 10 2020
Dropping the first 1 (starting from 1, 5, 35, ... with offset 1), the series reversion gives 1, -5, 15, -35, 70, ... (again offset 1), essentially A000332 and row 5 of A027555. - R. J. Mathar, Aug 17 2023
Number of rooted polyominoes composed of n hexagonal cells of the hyperbolic regular tiling with Schläfli symbol {6,oo}. A rooted polyomino has one external edge identified, and chiral pairs are counted as two. A stereographic projection of the {6,oo} tiling on the Poincaré disk can be obtained via the Christensson link. - Robert A. Russell, Jan 27 2024
This is instance k = 5 of the generalized Catalan family {C(k, n)}_{n>=0} given in a comment of A130564. - Wolfdieter Lang, Feb 05 2024

Examples

			There are a(2) = 5 quintic trees (vertex degree <= 5 and 5 possible branchings) with 2 vertices (one of them the root). Adding one more branch (one more vertex) to these five trees yields 5*5 + binomial(5,2) = 35 = a(3) such trees.
G.f. = 1 + x + 5*x^2 + 35*x^3 + 285*x^4 + 2530*x^5 + 23751*x^6 + 231880*x^7 + ...
G.f. = t + t^5 + 5*t^9 + 35*t^13 + 285*t^17 + 2530*t^21 + 23751*t^25 + 231880*t^29 + ...
		

References

  • Archiv der Mathematik u. Physik, Editor's note: "Über die Bestimmung der Anzahl der verschiedenen Arten, auf welche sich ein n-Eck durch Diagonalen in lauter m-Ecke zerlegen laesst, mit Bezug auf einige Abhandlungen der Herren Lame, Rodrigues, Binet, Catalan und Duhamel in dem Journal de Mathematiques pures et appliquees, publie par Joseph Liouville. T. III. IV.", Archiv der Mathematik u. Physik, 1 (1841), pp. 193ff; see especially p. 198.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 23.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, pp. 200, 347.
  • G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, Heidelberg, New York, 2 vols., 1972, Vol. 1, problem 211, p. 146 with solution on p. 348.
  • Ulrike Sattler, Decidable classes of formal power series with nice closure properties, Diplomarbeit im Fach Informatik, Univ. Erlangen - Nürnberg, Jul 27 1994.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001764, A002296, A258708, A346647 (binomial transform), A346665 (inverse binomial transform).
Fourth column of triangle A062993.
Polyominoes: A221184{n-1} (oriented), A004127 (unoriented), A369473 (chiral), A143546 (achiral), A002293 {5,oo}, A002295 {7,oo}.
Cf. A130564.

Programs

  • GAP
    List([0..22],n->Binomial(5*n,n)/(4*n+1)); # Muniru A Asiru, Nov 01 2018
  • Haskell
    a002294 n = a002294_list !! n
    a002294_list = [a258708 (3 * n) (2 * n) | n <- [1..]]
    -- Reinhard Zumkeller, Jun 23 2015
    
  • Magma
    [ Binomial(5*n,n)/(4*n+1): n in [0..100]]; // Vincenzo Librandi, Mar 24 2011
    
  • Maple
    seq(binomial(5*k+1,k)/(5*k+1),k=0..30); # Robert FERREOL, Apr 03 2015
    n:=30:G:=series(RootOf(g = 1+x*g^5, g),x=0,n+1):seq(coeff(G,x,k),k=0..n); # Robert FERREOL, Apr 03 2015
  • Mathematica
    CoefficientList[InverseSeries[ Series[ y - y^5, {y, 0, 100}], x], x][[Range[2, 100, 4]]]
    Table[Binomial[5n,n]/(4n+1),{n,0,20}] (* Harvey P. Dale, Dec 30 2011 *)
    a[ n_] := SeriesCoefficient[ HypergeometricPFQ[ {1, 2, 3, 4}/5, {2, 3, 5}/4, x 5^5/4^4], {x, 0, n}]; (* Michael Somos, May 06 2015 *)
    a[ n_] := With[{m = 4 n + 1}, SeriesCoefficient[ InverseSeries @ Series[ x - x^5, {x, 0, m}], {x, 0, m}]]; (* Michael Somos, May 06 2015 *)
  • PARI
    {a(n) = binomial( 5 * n, n) / (4*n + 1)}; /* Michael Somos, Mar 17 2011 */
    
  • PARI
    {a(n) = if( n<0, 0, n = 4*n + 1; polcoeff( serreverse( x - x^5 + x * O(x^n) ), n))}; /* Michael Somos, Mar 17 2011 */
    

Formula

For the connection with the solution of the quintic, hypergeometric series, and Lagrange inversion, see Beukers (2014). - N. J. A. Sloane, Mar 12 2014
G.f.: hypergeometric([1, 2, 3, 4] / 5, [2, 3, 5] / 4, x * 5^5 / 4^4). - Michael Somos, Mar 17 2011
O.g.f. A(x) satisfies A(x) = 1 + x * A(x)^5 = 1 / (1 - x * A(x)^4).
Given g.f. A(x) then z = t * A(t^4) satisfies 0 = z^5 - z + t. - Michael Somos, Mar 17 2011
a(n) = binomial(5*n, n - 1)/n, n >= 1, a(0) = 1. From the Lagrange series of the o.g.f. A(x) with its above given implicit equation.
a(n) = upper left term in M^n, M = the production matrix:
1, 1;
4, 4, 1;
10, 10, 4, 1;
20, 20, 10, 4, 1;
...
where (1, 4, 10, 20, ...) is the tetrahedral sequence, A000292. - Gary W. Adamson, Jul 08 2011
D-finite with recurrence: 8*n*(4*n+1)*(2*n-1)*(4*n-1)*a(n) - 5*(5*n-4)*(5*n-3)*(5*n-2)*(5*n-1)*a(n-1) = 0. - R. J. Mathar, Dec 02 2014
a(n) = binomial(5*n + 1, n)/(5*n + 1) = A062993(n+3,3). - Robert FERREOL, Apr 03 2015
a(0) = 1; a(n) = Sum_{i1 + i2 + ... + i5 = n - 1} a(i1) * a(i2) * ... *a(i5) for n >= 1. - Robert FERREOL, Apr 03 2015
From Ilya Gutkovskiy, Jan 15 2017: (Start)
O.g.f.: 5F4([1/5, 2/5, 3/5, 4/5, 1]; [1/2, 3/4, 1, 5/4]; 3125*x/256).[Cancellation of the 1s, see G.f. the above. - Wolfdieter Lang, Feb 05 2024]
E.g.f.: 4F4([1/5, 2/5, 3/5, 4/5]; [1/2, 3/4, 1, 5/4]; 3125*x/256).
a(n) ~ 5^(5*n + 1/2)/(sqrt(Pi) * 2^(8*n + 7/2) * n^(3/2)). (End)
x*A'(x)/A(x) = (A(x) - 1)/(- 4*A(x) + 5) = x + 9*x^2 + 91*x^3 + 969*x^4 + ... is the o.g.f. of A163456. Cf. A001764 and A002293 - A002296. - Peter Bala, Feb 04 2022
G.f. A(x) satisfies A(x) = 1/A(-x*A(x)^9). - Seiichi Manyama, Jun 16 2025

Extensions

More terms from Olivier Gérard, Jul 05 2001

A346664 a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * binomial(4*k,k) / (3*k + 1).

Original entry on oeis.org

1, 0, 3, 12, 73, 453, 2985, 20373, 142933, 1024302, 7466211, 55182240, 412586977, 3115105321, 23717115513, 181884676827, 1403719428485, 10894049061956, 84967420574247, 665643698649684, 5235570329071893, 41328838600501830, 327315349579739619, 2600034901186102182
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 27 2021

Keywords

Comments

Inverse binomial transform of A002293.

Crossrefs

Programs

  • Maple
    A346664 := proc(n)
        add( (-1)^(n-k)*binomial(n,k)*binomial(4*k,k)/(3*k+1),k=0..n) ;
    end proc:
    seq(A346664(n),n=0..80); # R. J. Mathar, Aug 17 2023
  • Mathematica
    Table[Sum[(-1)^(n - k) Binomial[n, k] Binomial[4 k, k]/(3 k + 1), {k, 0, n}], {n, 0, 23}]
    nmax = 23; A[] = 0; Do[A[x] = 1/(1 + x) + x (1 + x)^2 A[x]^4 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    nmax = 23; CoefficientList[Series[Sum[(Binomial[4 k, k]/(3 k + 1)) x^k/(1 + x)^(k + 1), {k, 0, nmax}], {x, 0, nmax}], x]
    Table[(-1)^n HypergeometricPFQ[{1/4, 1/2, 3/4, -n}, {2/3, 1, 4/3}, 256/27], {n, 0, 23}]
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n,k)*binomial(4*k,k)/(3*k+1)); \\ Michel Marcus, Jul 28 2021

Formula

G.f. A(x) satisfies: A(x) = 1 / (1 + x) + x * (1 + x)^2 * A(x)^4.
G.f.: Sum_{k>=0} ( binomial(4*k,k) / (3*k + 1) ) * x^k / (1 + x)^(k+1).
a(n) ~ 229^(n + 3/2) / (2048 * sqrt(2*Pi) * n^(3/2) * 3^(3*n + 3/2)). - Vaclav Kotesovec, Jul 30 2021
D-finite with recurrence +3*n*(3*n-1)*(3*n+1)*a(n) -74*n*(2*n-1) *(n-1)*a(n-1) -6*(n-1) *(101*n^2 -202*n +105)*a(n-2) -330*(n-1) *(n-2)*(2*n-3) *a(n-3) -229*(n-1)*(n-2) *(n-3)*a(n-4)=0. - R. J. Mathar, Aug 17 2023

A349361 G.f. A(x) satisfies: A(x) = 1 + x * A(x)^5 / (1 + x).

Original entry on oeis.org

1, 1, 4, 26, 194, 1581, 13625, 122120, 1126780, 10631460, 102104845, 994855179, 9809872626, 97710157154, 981636609906, 9935473707279, 101214412755647, 1036991125300748, 10678412226507032, 110459290208905008, 1147261657267290037
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 15 2021

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> coeff(series(RootOf(1+x*A^5/(1+x)-A, A), x, n+1), x, n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Nov 15 2021
  • Mathematica
    nmax = 20; A[] = 0; Do[A[x] = 1 + x A[x]^5/(1 + x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    Table[Sum[(-1)^(n - k) Binomial[n - 1, k - 1] Binomial[5 k, k]/(4 k + 1), {k, 0, n}], {n, 0, 20}]

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n-1,k-1) * binomial(5*k,k) / (4*k+1).
a(n) = (-1)^(n+1)*F([6/5, 7/5, 8/5, 9/5, 1-n], [3/2, 7/4, 2, 9/4], 5^5/2^8), where F is the generalized hypergeometric function. - Stefano Spezia, Nov 15 2021
From Vaclav Kotesovec, Nov 17 2021: (Start)
a(n) ~ 2869^(n + 1/2) / (25 * sqrt(Pi) * n^(3/2) * 2^(8*n + 7/2)).
Recurrence: 8*n*(2*n - 1)*(4*n - 1)*(4*n + 1)*a(n) = 3*(615*n^4 - 718*n^3 - 275*n^2 + 618*n - 200)*a(n-1) + 4*(n-2)*(2485*n^3 - 6879*n^2 + 6524*n - 2040)*a(n-2) + 2*(n-3)*(n-2)*(8095*n^2 - 23517*n + 18092)*a(n-3) + 12*(n-4)*(n-3)*(n-2)*(935*n - 1838)*a(n-4) + 2869*(n-5)*(n-4)*(n-3)*(n-2)*a(n-5). (End)

A346668 a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * binomial(8*k,k) / (7*k + 1).

Original entry on oeis.org

1, 0, 7, 70, 917, 12922, 192591, 2984156, 47594289, 776184997, 12884436285, 216981375849, 3698021707457, 63663537870121, 1105474964523293, 19339098305850757, 340519405008643561, 6030158137055187758, 107328892461895007043, 1918980244360791943044, 34450128513971163342013
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 27 2021

Keywords

Comments

Inverse binomial transform of A007556.
In general, for m > 1, Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * binomial(m*k,k) / ((m-1)*k + 1) ~ (m^m - (m-1)^(m-1))^(n + 3/2) / (sqrt(2*Pi) * m^((3*m-1)/2) * n^(3/2) * (m-1)^((m-1)*n + 3/2)). - Vaclav Kotesovec, Jul 30 2021

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^(n - k) Binomial[n, k] Binomial[8 k, k]/(7 k + 1), {k, 0, n}], {n, 0, 20}]
    nmax = 20; A[] = 0; Do[A[x] = 1/(1 + x) + x (1 + x)^6 A[x]^8 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    nmax = 20; CoefficientList[Series[Sum[(Binomial[8 k, k]/(7 k + 1)) x^k/(1 + x)^(k + 1), {k, 0, nmax}], {x, 0, nmax}], x]
    Table[(-1)^n HypergeometricPFQ[{1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8, -n}, {2/7, 3/7, 4/7, 5/7, 6/7, 1, 8/7}, 16777216/823543], {n, 0, 20}]
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n,k)*binomial(8*k,k)/(7*k + 1)); \\ Michel Marcus, Jul 28 2021

Formula

G.f. A(x) satisfies: A(x) = 1 / (1 + x) + x * (1 + x)^6 * A(x)^8.
G.f.: Sum_{k>=0} ( binomial(8*k,k) / (7*k + 1) ) * x^k / (1 + x)^(k+1).
a(n) ~ 15953673^(n + 3/2) / (34359738368 * sqrt(Pi) * n^(3/2) * 7^(7*n + 3/2)). - Vaclav Kotesovec, Jul 30 2021

A346628 G.f. A(x) satisfies: A(x) = 1 / (1 + x) + x * (1 + x) * A(x)^3.

Original entry on oeis.org

1, 0, 2, 5, 22, 92, 415, 1927, 9198, 44804, 221880, 1113730, 5653747, 28975962, 149725355, 779178092, 4080167790, 21483383992, 113670233848, 604070682354, 3222823434608, 17255628041720, 92689459311470, 499359484166994, 2697571066055611, 14608820993453132
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 25 2021

Keywords

Comments

Inverse binomial transform of A001764.

Crossrefs

Programs

  • Mathematica
    nmax = 25; A[] = 0; Do[A[x] = 1/(1 + x) + x (1 + x) A[x]^3 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    nmax = 25; CoefficientList[Series[Sum[(Binomial[3 k, k]/(2 k + 1)) x^k/(1 + x)^(k + 1), {k, 0, nmax}], {x, 0, nmax}], x]
    Table[Sum[(-1)^(n - k) Binomial[n, k] Binomial[3 k, k]/(2 k + 1), {k, 0, n}], {n, 0, 25}]

Formula

G.f.: Sum_{k>=0} ( binomial(3*k,k) / (2*k + 1) ) * x^k / (1 + x)^(k+1).
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * binomial(3*k,k) / (2*k + 1).
a(n) ~ 23^(n + 3/2) / (81 * sqrt(Pi) * n^(3/2) * 2^(2*n+2)). - Vaclav Kotesovec, Jul 30 2021
D-finite with recurrence +2*n*(2*n+1)*a(n) -(15*n-4)*(n-1)*a(n-1) -2*(n-1)*(21*n-22)*a(n-2) -23*(n-1)*(n-2)*a(n-3)=0. - R. J. Mathar, Aug 05 2021

A346666 a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * binomial(6*k,k) / (5*k + 1).

Original entry on oeis.org

1, 0, 5, 35, 335, 3405, 36601, 408630, 4693535, 55105970, 658390845, 7979041735, 97847884981, 1211946011450, 15139726594915, 190526268260405, 2413170608875655, 30738613968350640, 393519782671609951, 5060600804169151680, 65342131689498876095, 846781225288921612940
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 27 2021

Keywords

Comments

Inverse binomial transform of A002295.

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^(n - k) Binomial[n, k] Binomial[6 k, k]/(5 k + 1), {k, 0, n}], {n, 0, 21}]
    nmax = 21; A[] = 0; Do[A[x] = 1/(1 + x) + x (1 + x)^4 A[x]^6 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    nmax = 21; CoefficientList[Series[Sum[(Binomial[6 k, k]/(5 k + 1)) x^k/(1 + x)^(k + 1), {k, 0, nmax}], {x, 0, nmax}], x]
    Table[(-1)^n HypergeometricPFQ[{1/6, 1/3, 1/2, 2/3, 5/6, -n}, {2/5, 3/5, 4/5, 1, 6/5}, 46656/3125], {n, 0, 21}]
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n,k)*binomial(6*k,k)/(5*k + 1)); \\ Michel Marcus, Jul 28 2021

Formula

G.f. A(x) satisfies: A(x) = 1 / (1 + x) + x * (1 + x)^4 * A(x)^6.
G.f.: Sum_{k>=0} ( binomial(6*k,k) / (5*k + 1) ) * x^k / (1 + x)^(k+1).
a(n) ~ 43531^(n + 3/2) / (3359232 * sqrt(3*Pi) * n^(3/2) * 5^(5*n + 3/2)). - Vaclav Kotesovec, Jul 30 2021

A346667 a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * binomial(7*k,k) / (6*k + 1).

Original entry on oeis.org

1, 0, 6, 51, 578, 7011, 89931, 1198798, 16445122, 230643888, 3292247673, 47672499727, 698569117499, 10339672571689, 154357100458366, 2321475460350492, 35140713973159266, 534971413383669580, 8185501429052369700, 125811555778930237392, 1941590759206061655069
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 27 2021

Keywords

Comments

Inverse binomial transform of A002296.

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^(n - k) Binomial[n, k] Binomial[7 k, k]/(6 k + 1), {k, 0, n}], {n, 0, 20}]
    nmax = 20; A[] = 0; Do[A[x] = 1/(1 + x) + x (1 + x)^5 A[x]^7 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    nmax = 20; CoefficientList[Series[Sum[(Binomial[7 k, k]/(6 k + 1)) x^k/(1 + x)^(k + 1), {k, 0, nmax}], {x, 0, nmax}], x]
    Table[(-1)^n HypergeometricPFQ[{1/7, 2/7, 3/7, 4/7, 5/7, 6/7, -n}, {1/3, 1/2, 2/3, 5/6, 1, 7/6}, 823543/46656], {n, 0, 20}]
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n,k)*binomial(7*k,k)/(6*k + 1)); \\ Michel Marcus, Jul 28 2021

Formula

G.f. A(x) satisfies: A(x) = 1 / (1 + x) + x * (1 + x)^5 * A(x)^7.
G.f.: Sum_{k>=0} ( binomial(7*k,k) / (6*k + 1) ) * x^k / (1 + x)^(k+1).
a(n) ~ 776887^(n + 3/2) / (282475249 * sqrt(Pi) * n^(3/2) * 2^(6*n + 2) * 3^(6*n + 3/2)). - Vaclav Kotesovec, Jul 30 2021

A349300 G.f. A(x) satisfies: A(x) = 1 / ((1 + x) * (1 - x * A(x)^4)).

Original entry on oeis.org

1, 0, 1, 4, 21, 114, 651, 3844, 23301, 144169, 906866, 5782350, 37289431, 242793439, 1593918916, 10538988984, 70121101825, 469133993094, 3154115695476, 21299373321344, 144402246424591, 982506791975780, 6706724412165956, 45917245477282994
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 13 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 23; A[] = 0; Do[A[x] = 1/((1 + x) (1 - x A[x]^4)) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    Table[Sum[(-1)^(n - k) Binomial[n + 3 k, 4 k] Binomial[5 k, k]/(4 k + 1), {k, 0, n}], {n, 0, 23}]
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k) * binomial(n+3*k,4*k) * binomial(5*k,k) / (4*k+1)); \\ Michel Marcus, Nov 14 2021

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n+3*k,4*k) * binomial(5*k,k) / (4*k+1).
a(n) = (-1)^5*F([1/5, 2/5, 3/5, 4/5, (1+n)/3, (2+n)/3, (3+n)/3, -n], [1/4, 1/2, 1/2, 3/4, 3/4, 1, 5/4], 3^3*5^5/2^16), where F is the generalized hypergeometric function. - Stefano Spezia, Nov 14 2021
a(n) ~ sqrt(1 - 3*r) / (2 * 5^(3/4) * sqrt(2*Pi*(1+r)) * n^(3/2) * r^(n + 1/4)), where r = 0.136824361675510443450981569282313811786270109272790613523286... is the root of the equation 5^5 * r = 4^4 * (1+r)^4. - Vaclav Kotesovec, Nov 14 2021
From Peter Bala, Jun 02 2024: (Start)
A(x) = 1/(1 + x)*F(x/(1 + x)^4), where F(x) = Sum_{n >= 0} A002294(n)*x^n.
A(x) = 1/(1 + x) + x*A(x)^5. (End)

A346681 a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(5*k,k) / (4*k + 1).

Original entry on oeis.org

1, 0, 5, 30, 255, 2275, 21476, 210404, 2120041, 21830314, 228713056, 2430255074, 26128088701, 283703487059, 3106713300821, 34270543858459, 380471319687826, 4247891403168599, 47665096853113576, 537244509843680309, 6079834137116933061, 69054467456964456599
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 29 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^(n - k) Binomial[5 k, k]/(4 k + 1), {k, 0, n}], {n, 0, 21}]
    nmax = 21; A[] = 0; Do[A[x] = 1/(1 + x) + x (1 + x)^4 A[x]^5 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(5*k, k)/(4*k + 1)); \\ Michel Marcus, Jul 29 2021

Formula

G.f. A(x) satisfies: A(x) = 1 / (1 + x) + x * (1 + x)^4 * A(x)^5.
a(n) ~ 5^(5*n + 11/2) / (3381 * sqrt(Pi) * n^(3/2) * 2^(8*n + 7/2)). - Vaclav Kotesovec, Jul 30 2021
Showing 1-9 of 9 results.