cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A040976 a(n) = prime(n) - 2.

Original entry on oeis.org

0, 1, 3, 5, 9, 11, 15, 17, 21, 27, 29, 35, 39, 41, 45, 51, 57, 59, 65, 69, 71, 77, 81, 87, 95, 99, 101, 105, 107, 111, 125, 129, 135, 137, 147, 149, 155, 161, 165, 171, 177, 179, 189, 191, 195, 197, 209, 221, 225, 227, 231, 237, 239, 249, 255, 261
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that k! reduced mod (k+2) is 1. - Benoit Cloitre, Mar 11 2002
The first a(n) numbers starting from 2 are divisible by primes up to prime(n-1). - Lekraj Beedassy, Jun 21 2006
The terms in this sequence are the cumulative sums of distances from one prime to another. For example for the distance from the first to 26th prime, 2 to 101, the cumulative sum of distances is 99, always the last prime, here 101, minus 2. - Enoch Haga, Apr 24 2006
The primes in this sequence are the initial primes of twin prime pairs. - Sebastiao Antonio da Silva, Dec 21 2008
Note that many, but not all, of these numbers satisfy x such that x^(x+1) = 1 mod (x+2). The first exception is 339. - Thomas Ordowski, Nov 27 2013
If this sequence had an infinite number of primes, the twin prime conjecture would follow. Sequence holds all primes in A001359. - John W. Nicholson, Apr 14 2014
From Bernard Schott, Feb 19 2023: (Start)
Equivalently, except for a(1)=0, all terms are odd integers d such that the longest possible arithmetic progression (AP) of primes with common difference d has only two elements.
For each term d, there exists only one such AP of primes, and this one always starts with A342309(d) = 2, so this unique AP is (2, 2+d) = (2, prime(m)) with m > 1; so, first examples are (2,3), (2,5), (2,7), (2,11), ... next elements should be respectively: 4, 8, 12, 20, ... that are all composite numbers.
Similar sequence with even common differences d is A360735.
This subsequence of A359408 corresponds to the first case: '2 is prime'; second case corresponding to the even common differences d is A360735. (End)

Examples

			a(13) = 39, because A000040(13) = 41.
		

Crossrefs

Equals A359408 \ A360735.
First column of A086800, and of A379011, last diagonal of A090321, and of A162621.
See also irregular triangles A103728, A319148, A369497.

Programs

Formula

a(n) = A000040(n) - 2 = Sum_{i=1..n-1} A001223(i).
For n > 2: A092953(a(n)) = 1. - Reinhard Zumkeller, Nov 10 2012
If m is a term then A123556(m) = 2, but the converse is false: a counterexample is A123556(16) = 2 and 16 is not a term. - Bernard Schott, Feb 19 2023
a(n) = Sum_{k = 2..floor(2n*log(n)+2)} (1-floor(A000720(k)/n)). [Ruiz and Sondow]. - Elias Alejandro Angulo Klein, Apr 09 2024

A007921 Numbers that are not the difference of two primes.

Original entry on oeis.org

7, 13, 19, 23, 25, 31, 33, 37, 43, 47, 49, 53, 55, 61, 63, 67, 73, 75, 79, 83, 85, 89, 91, 93, 97, 103, 109, 113, 115, 117, 119, 121, 123, 127, 131, 133, 139, 141, 143, 145, 151, 153, 157, 159, 163, 167, 169, 173, 175, 181, 183, 185, 187, 193
Offset: 1

Views

Author

R. Muller

Keywords

Comments

Conjecturally, odd numbers k such that k+2 is composite.
Is this the same as A068780(2n-1) - 1? - J. Stauduhar, Aug 23 2012
A092953(a(n)) = 0. - Reinhard Zumkeller, Nov 10 2012
It seems that the sequence contains the squares of all primes except for 2 and 3. - Ivan N. Ianakiev, Aug 29 2013 [It does: For every prime p > 3, note that p^2 == 1 (mod 3), so p^2 cannot be q - r where q and r are primes. (If it were, then since p^2 is odd, q and r could not both be odd primes; r would have to be the even prime, 2, which would mean that p^2 = q - 2, so q = p^2 + 2 == 0 (mod 3), i.e., 3 would divide q, so q would not be prime -- a contradiction.) - Jon E. Schoenfield, May 03 2024]
Integers d such that A123556(d) = 1, that is, integers d such that the largest possible arithmetic progression (AP) of primes with common difference d has only one element. For each such d, the unique element of all the first largest APs with 1 element is A342309(d) = 2. - Bernard Schott, Jan 08 2023
If it exists, the least even term is > 10^12 (see 1st comment in A020483). - Bernard Schott, Jan 09 2023

References

  • F. Smarandache, Properties of Numbers, 1972. (See Smarandache odd sieve.)

Crossrefs

Cf. A048859.
Complement of A030173. Cf. A001223.
Cf. also A005408, A010051.
Largest AP of prime numbers with k elements: this sequence (k=1), A359408 (k=2), A206037 (k=3), A359409 (k=4), A206039 (k=5), A359410 (k=6), A206041 (k=7), A206042 (k=8), A206043 (k=9), A206044 (k=10), A206045 (k=11).

Programs

  • Haskell
    a007921 n = a007921_list !! (n-1)
    a007921_list = filter ((== 0) . a010051' . (+ 2)) [1, 3 ..]
    -- Reinhard Zumkeller, Jul 03 2015
    
  • Maple
    filter :=  d -> irem(d, 2) <> 0 and not isprime(2+d) : select(filter, [`$`(1 .. 200)]); # Bernard Schott, Jan 08 2023
  • Mathematica
    Lim=200;nn=10;seq:=Complement[Range[Lim],Union[Flatten[Differences/@Subsets[Prime[Range[nn]],{2}]]]];Until[AllTrue[seq,OddQ],nn++];seq (* James C. McMahon, May 04 2024 *)
  • PARI
    is(n)=n%2 && !isprime(n+2) \\ On Polignac's conjecture; Charles R Greathouse IV, Jun 28 2013
    
  • Python
    from sympy import isprime
    print([n for n in range(1, 200) if n%2 and not isprime(n + 2)]) # Indranil Ghosh, Jun 15 2017, after Charles R Greathouse IV

A206037 Values of the difference d for 3 primes in arithmetic progression with the minimal start sequence {3 + j*d}, j = 0 to 2.

Original entry on oeis.org

2, 4, 8, 10, 14, 20, 28, 34, 38, 40, 50, 64, 68, 80, 94, 98, 104, 110, 124, 134, 154, 164, 178, 188, 190, 208, 220, 230, 238, 248, 260, 280, 308, 314, 328, 344, 370, 418, 428, 430, 440, 454, 458, 484, 518, 544, 560, 574, 584, 610, 614, 628, 638, 640, 644, 650
Offset: 1

Views

Author

Sameen Ahmed Khan, Feb 03 2012

Keywords

Comments

The computations were done without any assumptions on the form of d.
Numbers k such that k+3 and 2k+3 are both primes.
Equivalently, integers d such that the largest possible arithmetic progression (AP) of primes with common difference d has exactly 3 elements (see example). These 3 elements are not necessarily consecutive primes. In fact, for each term d, there exists only one such AP of primes, and this one starts always with A342309(d) = 3, so this AP is (3, 3+d, 3+2d). - Bernard Schott, Jan 15 2023

Examples

			d = 8 then {3, 3 + 1*8, 3 + 2*8} = {3, 11, 19}, which is 3 primes in arithmetic progression.
		

Crossrefs

Largest AP of prime numbers with k elements: A007921 (k=1), A359408 (k=2), this sequence (k=3), A359409 (k=4), A206039 (k=5), A359410 (k=6), A206041 (k=7).

Programs

  • Magma
    [n: n in [1..700] | IsPrime(3+n) and IsPrime(3+2*n)]; // Vincenzo Librandi, Dec 28 2015
  • Maple
    filter := d -> isprime(3+d) and isprime(3+2*d) : select(filter, [$(1 .. 650)]); # Bernard Schott, Jan 16 2023
  • Mathematica
    t={}; Do[If[PrimeQ[{3, 3 + d, 3 + 2*d}] == {True, True, True}, AppendTo[t, d]], {d, 1000}]; t
    Select[Range[2,700,2],And@@PrimeQ[{3+#,3+2#}]&] (* Harvey P. Dale, Sep 25 2013 *)
  • PARI
    for(n=1, 1e3, if(isprime(n + 3) && isprime(2*n + 3), print1(n, ", "))); \\ Altug Alkan, Dec 27 2015
    

Formula

a(n) = 2 * A115334(n). - Wesley Ivan Hurt, Feb 06 2014
m is a term iff A123556(m) = 3. - Bernard Schott, Jan 15 2023

A123556 Number of elements in longest possible arithmetic progression of primes with difference n.

Original entry on oeis.org

2, 3, 2, 3, 2, 5, 1, 3, 2, 3, 2, 5, 1, 3, 2, 2, 2, 4, 1, 3, 2, 2, 1, 4, 1, 2, 2, 3, 2, 6, 1, 2, 1, 3, 2, 4, 1, 3, 2, 3, 2, 5, 1, 2, 2, 2, 1, 5, 1, 3, 2, 2, 1, 4, 1, 2, 2, 2, 2, 6, 1, 2, 1, 3, 2, 4, 1, 3, 2, 2, 2, 4, 1, 2, 1, 2, 2, 4, 1, 3, 2, 2, 1, 4, 1, 2, 2, 2, 1, 6, 1, 2, 1, 3, 2, 5, 1, 3, 2, 2, 2, 4, 1, 3, 2
Offset: 1

Views

Author

David W. Wilson, Nov 15 2006, revised Nov 25 2006

Keywords

Comments

Length of n-th row of A124064.
The corresponding smallest term of the first such longest possible arithmetic progression of primes with common difference n is A342309(n). - Bernard Schott, Oct 12 2021
From Bernard Schott, Feb 24 2023: (Start)
For every positive integer n, there exists a smallest prime p that does not divide n = A053669(n); then, an AP of k primes with common difference n cannot contain more terms than this value of p so k <= p, moreover, the longest possible APs of primes have p-1 or p elements.
Proof: consider the AP of p elements (q, q+n, q+2*n, q+3*n, ..., q+(p-1)*n) with common difference n, q prime and p is the smallest prime that does not divide n; the modular arithmetic modulo p gives this set of remainders with p elements: {0, 1, 2, ..., p-1}, so there is always a multiple of p in each such AP with p terms, hence length k of longest possible AP of primes is >= p-1 and <= p.
Moreover, when the longest possible AP contains k = p elements, then this unique longest AP must start with p (corresponding to remainder = 0) and the common difference n is a multiple of A151799(p)# and not of p#, where # = primorial = A002110.
Now, always with a common difference n, when the longest possible AP contains k = p-1 elements, these longest APs with p-1 primes can start with p or with another prime q != p, and there are infinitely many such longest APs with p-1 terms (see Properties in Wikipedia link) in this case. When this AP starts with p, the set of remainders is {0, 1, ..., p-2} and when this AP starts with q, then the set of remainders becomes {1, 2, ..., p-1}.
Terms are ordered without repetition in A173919. (End)

Examples

			a(1) = 2 for the AP (arithmetic progression) (2, 3) with A342309(1) = 2.
a(2) = 3 for the AP (3, 5, 7) with A342309(2) = 3.
a(3) = 2 for the AP (2, 5) with A342309(3) = 2.
a(6) = 5 for the AP (5, 11, 17, 23, 29) with A342309(6) = 5.
a(7) = 1 for the AP (2) with A342309(7) = 2.
a(18) = 4 for the AP (5, 23, 41, 59) with A342309(18) = 5.
a(30) = 6 for the AP (7, 37, 67, 97, 127, 157) with A342309(30) = 7.
a(150) = 7 for the AP (7, 157, 307, 457, 607, 757, 907) with A342309(150) = 7.
From _Bernard Schott_, Feb 25 2023: (Start)
For n = 12, p = A053669(12) = 5 and the AP (5, 17, 29, 41, 53) has 5 elements that are primes (the next should be 65 = 5*13), so a(12) = 5. This AP is the unique longest possible AP of primes with a common difference n = 12.
For n = 30, p = A053669(30) = 7 and the AP (7, 37, 67, 97, 127, 157) has 7-1 = 6 elements that are primes (the next should be 187 = 11*17) so a(30) = 6. Also, there are infinitely many such longest APs with common difference 30 and 6 elements. These other longest APs start with primes q that are > p = 7. The first few next q are 107, 359, 541, 2221, 6673, 7457, ...
For n = 60, p = A053669(60) = 7 and the longest AP that starts with 7 is (7, 67, 127) has only 3 elements that are primes (the next should be 187 = 11*17) so a(60) = 6. Also, there are infinitely many such longest APs with common difference 60 and 6 elements. All these longest APs start with primes q that are > p = 7. The first few such q are 11, 53, 641, 5443, 10091, 12457, ... and the smallest such AP is (11, 71, 131, 191, 251, 311). (End)
		

Crossrefs

Sequences such that a(n) = k iff ...: A007921 (a(n)=1), A359408 (a(n)=2), A206037 (a(n)=3), A359409 (a(n)=4), A206039 (a(n)=5), A359410 (a(n)=6), A206041 (a(n)=7), A360146 (a(n)=10), A206045 (a(n)=11).

Programs

  • PARI
    A053669(n) = forprime(p=2, , if(n%p, return(p)));
    a(n) = my(p=A053669(n)); for (i=1, p-1, if (!isprime(p+i*n), return(p-1))); p; \\ Michel Marcus, Feb 26 2023

Formula

Assume the k-tuples conjecture. Let p = A053669(n). If the arithmetic progression of p elements starting at p with difference n consists of primes, then a(n) = p, otherwise a(n) = p-1.

A206045 Numbers d such that 11 + j*d is prime for j = 0 to 10.

Original entry on oeis.org

1536160080, 4911773580, 25104552900, 77375139660, 83516678490, 100070721660, 150365447400, 300035001630, 318652145070, 369822103350, 377344636200, 511688932650, 580028072610, 638663371710, 701534299830, 745828915650, 776625236100, 883476548850, 925639075620, 956863233690
Offset: 1

Views

Author

Sameen Ahmed Khan, Feb 03 2012

Keywords

Comments

Original name: Values of the difference d for 11 primes in arithmetic progression with the minimal start sequence {11 + j*d}, j = 0 to 10.
The computations were done without any assumptions on the form of d. 21st term is greater than 10^12.
All terms are multiples of 210=2*3*5*7. - Zak Seidov, May 16 2015
Equivalently, integers d such that the longest possible arithmetic progression (AP) of primes with common difference d has exactly 11 elements (see example). These 11 elements are not necessarily consecutive primes. In fact, here, for each term d, there exists only one such AP of primes, and this one always starts with A342309(d) = 11, so this unique AP is (11, 11+d, 11+2d, 11+3d, 11+4d, 11+5d, 11+6d, 11+7d, 11+8d, 11+9d, 11+10d). - Bernard Schott, Mar 08 2023

Examples

			d = 4911773580 then {11, 4911773591, 9823547171, 14735320751, 19647094331, 24558867911, 29470641491, 34382415071, 39294188651, 44205962231, 49117735811} which is 11 primes in arithmetic progression.
		

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 139.

Crossrefs

Common differences for longest possible APs of primes with exactly k elements: A007921 (k=1), A359408 (k=2), A206037 (k=3), A359409 (k=4), A206039 (k=5), A359410 (k=6), A206041 (k=7), A360146 (k=10), this sequence (k=11).

Programs

  • Mathematica
    a = 11; Do[If[PrimeQ[{a, a + d, a + 2*d, a + 3*d, a + 4*d, a + 5*d, a + 6*d, a + 7*d, a + 8*d, a + 9*d, a + 10*d}] == {True, True, True, True, True, True, True, True, True, True, True}, Print[d]], {d, 210,10^12, 210}] (* corrected by Zak Seidov, May 16 2015 *)
    Select[Range[210,10^12,210],AllTrue[Range[0,10]#+11,PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 28 2016 *)
  • PARI
    is(n)=for(j=1,10, if(!isprime(j*n+11), return(0))); 1 \\ Charles R Greathouse IV, May 18 2015

Formula

m is a term iff A123556(m) = 11. - Bernard Schott, Mar 08 2023

Extensions

New name from Charles R Greathouse IV, May 18 2015

A206039 Values of the difference d for 5 primes in arithmetic progression with the minimal start sequence {5 + j*d}, j = 0 to 4.

Original entry on oeis.org

6, 12, 42, 48, 96, 126, 252, 426, 474, 594, 636, 804, 1218, 1314, 1428, 1566, 1728, 1896, 2106, 2574, 2694, 2898, 3162, 3366, 4332, 4368, 4716, 4914, 4926, 4962, 5472, 5586, 5796, 5838, 6048, 7446, 7572, 7818, 8034, 8958, 9168, 9204, 9714
Offset: 1

Views

Author

Sameen Ahmed Khan, Feb 03 2012

Keywords

Comments

The computations were done without any assumptions on the form of d.
All terms are multiples of 6. - Zak Seidov, Jan 07 2014
Equivalently, integers d such that the largest possible arithmetic progression (AP) of primes with common difference d has exactly 5 elements (see example). These 5 elements are not necessarily consecutive primes. In fact, for each term d, there exists only one such AP of primes, and this one always starts with A342309(d) = 5, so this unique AP is (5, 5+d, 5+2d, 5+3d, 5+4d). - Bernard Schott, Jan 25 2023

Examples

			d = 12 then {5, 5 + 1*12, 5 + 2*12, 5 + 3*12, 5 + 4*12} = {5, 17, 29, 41, 53}, which is 5 primes in arithmetic progression.
		

Crossrefs

Largest AP of prime numbers with exactly k elements: A007921 (k=1), A359408 (k=2), A206037 (k=3), A359409 (k=4), this sequence (k=5), A359410 (k=6), A206041 (k=7), A360146 (k=10), A206045 (k=11).

Programs

  • Maple
    filter := d -> isprime(5+d) and isprime(5+2*d) and isprime(5+3*d) and isprime(5+4*d) : select(filter, [$(1 .. 10000)]); # Bernard Schott, Jan 25 2023
  • Mathematica
    t={}; Do[If[PrimeQ[{5, 5 + d, 5 + 2*d, 5 + 3*d, 5 +4*d}] == {True, True, True, True, True}, AppendTo[t, d]], {d, 10000}]; t
    Select[Range[10000],AllTrue[5+#*Range[0,4],PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, May 09 2015 *)

Formula

m is a term iff A123556(m) = 3. - Bernard Schott, Jan 25 2023

A206041 Values of the difference d for 7 primes in arithmetic progression with the minimal start sequence {7 + j*d}, j = 0 to 6.

Original entry on oeis.org

150, 2760, 3450, 9150, 14190, 20040, 21240, 63600, 76710, 117420, 122340, 134250, 184470, 184620, 189690, 237060, 274830, 312000, 337530, 379410, 477630, 498900, 514740, 678750, 707850, 1014540, 1168530, 1180080, 1234530, 1251690, 1263480, 1523520, 1690590
Offset: 1

Views

Author

Sameen Ahmed Khan, Feb 03 2012

Keywords

Comments

The computations were done without any assumptions on the form of d.
All terms are multiples of 30. - Zak Seidov, Jan 07 2014.
Equivalently, integers d such that the longest possible arithmetic progression (AP) of primes with common difference d has exactly 7 elements (see example). These 7 elements are not necessarily consecutive primes. In fact, for each term d, there exists only one such AP of primes, and this one always starts with A342309(d) = 7, so this unique AP is (7, 7+d, 7+2d, 7+3d, 7+4d, 7+5d, 7+6d). - Bernard Schott, Feb 12 2023

Examples

			d = 150 then {7, 7 + 1*150, 7 + 2*150, 7 + 3*150, 7 + 4*150, 7 + 5*150, + 7 + 6*150} = {7, 157, 307, 457, 607, 757, 907} which is 7 primes in arithmetic progression.
		

Crossrefs

Longest AP of prime numbers with exactly k elements: A007921 (k=1), A359408 (k=2), A206037 (k=3), A359409 (k=4), A206039 (k=5), A359410 (k=6), this sequence (k=7), A360146 (k=10), A206045 (k=11).

Programs

  • Maple
    filter := d -> isprime(7+d) and isprime(7+2*d) and isprime(7+3*d) and isprime(7+4*d) and isprime(7+5*d) and isprime(7+6*d): select(filter, [$(1 .. 1700000)]); # Bernard Schott, Feb 13 2023
  • Mathematica
    a = 7; t = {}; Do[If[PrimeQ[{a, a + d, a + 2*d, a + 3*d, a + 4*d, a + 5*d, a + 6*d}] == {True, True, True, True, True, True, True}, AppendTo[t,d]], {d, 200000}]; t

Formula

m is a term iff A123556(m) = 7. - Bernard Schott, Feb 12 2023

A359409 Integers d such that the largest possible arithmetic progression (AP) of primes with common difference d has exactly four elements.

Original entry on oeis.org

18, 24, 36, 54, 66, 72, 78, 84, 102, 108, 114, 132, 138, 144, 156, 162, 168, 174, 186, 192, 198, 204, 216, 222, 228, 234, 246, 258, 264, 276, 282, 288, 294, 306, 312, 318, 324, 336, 342, 348, 354, 366, 372, 378, 384, 396, 402, 408, 414, 432, 438, 444, 456, 462, 468, 486
Offset: 1

Views

Author

Bernard Schott, Jan 23 2023

Keywords

Comments

These 4 elements are not necessarily consecutive primes.
A342309(d) gives the first element of the smallest AP with 4 elements whose common difference is a(n) = d.
All the terms are multiples of 6 (A008588) but are not multiples of 5 and also must not belong to A206039; indeed, terms d' in A206039 correspond to the largest possible arithmetic progression (AP) of primes that have exactly five elements with this common difference d'.

Examples

			d = 18 is a term because the largest possible APs of primes with common difference d = 18 have all 4 elements; the first such APs start with 5, 43, 53, ... The smallest one is (5, 23, 41, 59) then 77 is composite.
d = 24 is another term because the largest possible APs of primes with common difference d = 24 have all 4 elements; the first such APs start with 59, 79, 349, ... The smallest one is (59, 83, 107, 131) then 155 is composite.
		

Crossrefs

Subsequence of A008588.
Largest AP of prime numbers with k elements: A007921 (k=1), A359408 (k=2), A206037 (k=3), this sequence (k=4), A206039 (k=5), A359410 (k=6), A206041 (k=7).

Programs

  • PARI
    isok(d) = (d%5) && !(d%6) && !(isprime(5+d) && isprime(5+2*d) && isprime(5+3*d) && isprime(5+4*d)); \\ Michel Marcus, Jan 23 2023

Formula

m is a term iff A123556(m) = 4.

A359410 Integers d such that the longest possible arithmetic progression (AP) of primes with common difference d has exactly 6 elements.

Original entry on oeis.org

30, 60, 90, 120, 180, 240, 270, 300, 330, 360, 390, 450, 480, 510, 540, 570, 600, 660, 690, 720, 750, 780, 810, 870, 900, 930, 960, 990, 1020, 1080, 1110, 1140, 1170, 1200, 1230, 1290, 1320, 1350, 1380, 1410, 1440, 1500, 1530, 1560, 1590, 1620, 1650, 1710, 1740
Offset: 1

Views

Author

Bernard Schott, Jan 29 2023

Keywords

Comments

The 6 elements are not necessarily consecutive primes.
A342309(d) gives the first element of the smallest AP with 6 elements whose common difference is a(n) = d.
All the terms are positive multiples of 30 (A249674) but are not multiples of 7 and also must not belong to A206041; indeed, terms d' in A206041 correspond to the longest possible APs of primes that have exactly 7 elements with this common difference d'.

Examples

			d = 30 is a term because the longest possible APs of primes with common difference d = 30 all have 6 elements; the first such APs start with 7, 107, 359, .... The smallest one is (7, 37, 67, 97, 127, 157); then 187 = 11*17.
d = 60 is another term because the longest possible APs of primes with common difference d = 60 all have 6 elements; the first such APs start with 11, 53, 641, .... The smallest one is (11, 71, 131, 191, 251, 311); then 371 = 7*53.
d = 150 is not a term because the longest possible AP of primes with common difference d = 150 is (7, 157, 307, 457, 607, 757, 907) which has 7 elements; this last one is unique.
		

Crossrefs

Subsequence of A249674.
Longest AP of prime numbers with exactly k elements: A007921 (k=1), A359408 (k=2), A206037 (k=3), A359409 (k=4), A206039 (k=5), this sequence (k=6), A206041 (k=7), no sequence for (k=8) and (k=9), A360146 (k=10), A206045 (k=11).

Programs

  • Maple
    filter := d -> (irem(d, 30) = 0) and (irem(d, 7) <> 0) and not (isprime(7+d) and isprime(7+2*d) and isprime(7+3*d) and isprime(7+4*d) and isprime(7+5*d) and isprime(7+6*d)): select(filter, [$(1 .. 1740)]);

Formula

m is a term iff A123556(m) = 6.

A360146 Integers d such that the longest possible arithmetic progression (AP) of primes with common difference d has exactly 10 elements.

Original entry on oeis.org

210, 420, 630, 840, 1050, 1260, 1470, 1680, 1890, 2100, 2520, 2730, 2940, 3150, 3360, 3570, 3780, 3990, 4200, 4410, 4830, 5040, 5250, 5460, 5670, 5880, 6090, 6300, 6510, 6720, 7140, 7350, 7560, 7770, 7980, 8190, 8400, 8610, 8820, 9030, 9450, 9660, 9870, 10080, 10290, 10500, 10710, 10920
Offset: 1

Views

Author

Bernard Schott, Mar 09 2023

Keywords

Comments

The 10 elements are not necessarily consecutive primes.
All the terms are positive multiples of 210 = 7# but are not multiples of 11 and also must not belong to A206045, where the first term is 1536160080; indeed, terms d' in A206045 correspond to the longest possible APs of primes that have exactly 11 elements with these common differences d'.
A342309(d) gives the first element of the smallest AP with 10 elements whose common difference is a(n) = d.

Examples

			d = 210 is a term because the longest possible APs of primes with common difference d = 210 all have 10 elements. The first such AP is (199, 409, 619, 829, 1039, 1249, 1459, 1669, 1879, 2089), then 2299 = 11*209.
d = 420 is another term because the longest possible APs of primes with common difference d = 420 all have 10 elements; the first such APs start with 52879, 3544939, ... The smallest one is (52879, 53299, 53719, 54139, 54559, 54979, 55399, 55819, 56239, 56659), then 57079 = 11*5189.
		

Crossrefs

Common differences for longest possible APs of primes with exactly k elements: A007921 (k=1), A359408 (k=2), A206037 (k=3), A359409 (k=4), A206039 (k=5), A359410 (k=6), A206041 (k=7), this sequence (k=10), A206045 (k=11).

Programs

  • PARI
    A053669(n) = forprime(p=2, , if(n%p, return(p)));
    f(n) = my(p=A053669(n)); for (i=1, p-1, if (!isprime(p+i*n), return(p-1))); p; \\ A123556
    isok(n) = f(n) == 10; \\ Michel Marcus, Mar 10 2023

Formula

m is a term iff A123556(m) = 10.
Showing 1-10 of 11 results. Next