cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 96 results. Next

A032282 Number of bracelets (turnover necklaces) of n beads of 2 colors, 11 of them black.

Original entry on oeis.org

1, 1, 6, 16, 56, 147, 392, 912, 2052, 4262, 8524, 16159, 29624, 52234, 89544, 148976, 242086, 384111, 597506, 911456, 1367184, 2017509, 2934559, 4209504, 5963464, 8347612, 11558232, 15837472, 21493712, 28903332
Offset: 11

Views

Author

Keywords

Comments

From Vladimir Shevelev, Apr 23 2011: (Start)
Also number of non-equivalent necklaces of 11 beads each of them painted by one of n colors.
The sequence solves the so-called Reis problem about convex k-gons in case k=11 (see our comment to A032279).
(End)

References

  • N. Zagaglia Salvi, Ordered partitions and colourings of cycles and necklaces, Bull. Inst. Combin. Appl., 27 (1999), 37-40.

Crossrefs

Column k=11 of A052307.

Programs

  • Mathematica
    k = 11; Table[(Apply[Plus, Map[EulerPhi[ # ]Binomial[n/#, k/# ] &, Divisors[GCD[n, k]]]]/n + Binomial[If[OddQ[n], n - 1, n - If[OddQ[k], 2, 0]]/2, If[OddQ[k], k - 1, k]/2])/2, {n, k, 50}] (* Robert A. Russell, Sep 27 2004 *)
    k=11;CoefficientList[Series[x^k*(1/k Plus@@(EulerPhi[#] (1-x^#)^(-(k/#))&/@Divisors[k])+(1+x)/(1-x^2)^Floor[(k+2)/2])/2,{x,0,50}],x] (* Herbert Kociemba, Nov 04 2016 *)

Formula

"DIK[ 11 ]" (necklace, indistinct, unlabeled, 11 parts) transform of 1, 1, 1, 1...
From Vladimir Shevelev, Apr 23 2011: (Start)
Put s(n,k,d)=1, if n==k(mod d), and s(n,k,d)=0, otherwise. Then
a(n) = 5*s(n,0,11)/11+(3840*C(n-1,10)+11*(n-2)*(n-4)*(n-6)(n-8)*(n-10))/84480, if n is even;
a(n) = 5*s(n,0,11)/11+(3840*C(n-1,10)+11*(n-1)*(n-3)*(n-5)*(n-7)*(n-9))/84480, if n is odd.
(End)
From Herbert Kociemba, Nov 05 2016: (Start)
G.f.: 1/22*x^11*(1/(1-x)^11 + 11/((-1+x)^6*(1+x)^5) - 10/(-1+x^11)).
G.f.: k=11, x^k*((1/k)*Sum_{d|k} phi(d)*(1-x^d)^(-k/d) + (1+x)/(1-x^2)^floor[(k+2)/2])/2. [edited by Petros Hadjicostas, Jul 18 2018]
(End)

A091967 a(n) is the n-th term of sequence A_n, ignoring the offset, or -1 if A_n has fewer than n terms.

Original entry on oeis.org

0, 2, 1, 0, 2, 3, 0, 6, 6, 4, 44, 1, 180, 42, 16, 1096, 7652, 13781, 8, 24000, 119779, 458561, 152116956851941670912, 1054535, -53, 26, 27, 59, 4806078, 2, 35792568, 3010349, 2387010102192469724605148123694256128, 2, 0, -53, 43, 0, -4097, 173, 37338, 111111111111111111111111111111111111111111, 30402457, 413927966
Offset: 1

Views

Author

Proposed by several people, including Jeff Burch and Michael Joseph Halm

Keywords

Comments

This version ignores the offset of A_n and just counts from the beginning of the terms shown in the OEIS entry.
Thus a(8) = 6 because A_8 begins 1,1,2,2,3,4,5,6,... [even though A_8(8) is really 7].
The value a(n) = -1 could arise in two different ways, but it will be easy to decide which. - N. J. A. Sloane, Nov 27 2016
From M. F. Hasler, Sep 22 2013: (Start)
The value of a(91967) can be chosen at will.
Note that this sequence may change if the initial terms in A_n are altered, which does happen from time to time, usually because of the addition of an initial term.
After a(47), currently unknown, the sequence continues with a(48) = A48(47) = 1497207322929, a(49) = A49(48) = unknown, a(50) = A50(49) = unknown, a(51) = A51(50) = 1125899906842625, a(52)=97, a(53) = -1 (since A000053 has only 29 terms). (End)
a(58) = A000058(57) = 138752...985443 (29334988649136302 digits) is too large to include in the b-file. - Pontus von Brömssen, May 21 2022

Examples

			a(1) = 0 since A000001 has offset 0, and begins with A000001(0) = 0.
a(26) = 26 because the 26th term of A000026 = 26.
		

Crossrefs

Extensions

Corrected and extended by Jud McCranie; further extended by N. J. A. Sloane and E. M. Rains, Dec 08 1998
Corrected and extended by N. J. A. Sloane, May 25 2005
a(26), a(36) and a(42) corrected by M. F. Hasler, Jan 30 2009
a(43) and a(44) added by Daniel Sterman, Nov 27 2016
a(1) corrected by N. J. A. Sloane, Nov 27 2016 at the suggestion of Daniel Sterman
Definition and comments changed by N. J. A. Sloane, Nov 27 2016

A261600 Number of primitive (aperiodic, or Lyndon) necklaces with n beads such that beads of a largest subset have label 0, beads of a largest remaining subset have label 1, and so on.

Original entry on oeis.org

1, 1, 1, 3, 11, 49, 265, 1640, 11932, 96780, 887931, 8939050, 99298073, 1195617442, 15619180497, 219049941148, 3293800823995, 52746930894773, 897802366153076, 16167544246362566, 307372573010691195, 6148811682561388635, 129164845357775064609
Offset: 0

Views

Author

Alois P. Heinz, Aug 27 2015

Keywords

Examples

			a(3) = 3: 001, 012, 021.
a(4) = 11: 0001, 0011, 0012, 0021, 0102, 0123, 0132, 0213, 0231, 0312, 0321.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n, i, g, d, j) option remember; `if`(g>0 and gn, 0, binomial(n/j, i/j)*b(n-i, i, igcd(i, g), d, j)))))
        end:
    a:= n-> `if`(n=0, 1, add(add((f-> `if`(f=0, 0, f*b(n$2, 0, d, j)))(
                         mobius(j)), j=divisors(d)), d=divisors(n))/n):
    seq(a(n), n=0..25);
  • Mathematica
    b[n_, i_, g_, d_, j_] := b[n, i, g, d, j] = If[g>0 && gn, 0, Binomial[n/j, i/j]*b[n-i, i, GCD[i, g], d, j]]]]]; a[n_] := If[n==0, 1, Sum[Sum[ Function[f, If[f==0, 0, f*b[n, n, 0, d, j]]][MoebiusMu[j]], {j, Divisors[ d]}], {d, Divisors[n]}]/n]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 22 2017, translated from Maple *)

Formula

a(n) ~ c * (n-1)!, where c = Product_{k>=2} 1/(1-1/k!) = A247551 = 2.52947747207915264818011615... . - Vaclav Kotesovec, Aug 27 2015

A320748 Array read by antidiagonals: T(n,k) is the number of color patterns (set partitions) in an unoriented cycle of length n using k or fewer colors (subsets).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 3, 4, 1, 1, 2, 3, 6, 4, 1, 1, 2, 3, 7, 9, 8, 1, 1, 2, 3, 7, 11, 22, 9, 1, 1, 2, 3, 7, 12, 33, 40, 18, 1, 1, 2, 3, 7, 12, 36, 73, 100, 23, 1, 1, 2, 3, 7, 12, 37, 89, 237, 225, 44, 1, 1, 2, 3, 7, 12, 37, 92, 322, 703, 582, 63, 1, 1, 2, 3, 7, 12, 37, 93, 349, 1137, 2433, 1464, 122, 1, 1, 2, 3, 7, 12, 37, 93, 353, 1308, 4704, 8309, 3960, 190, 1, 1, 2, 3, 7, 12, 37, 93, 354, 1345, 5953, 19839, 30108, 10585, 362, 1
Offset: 1

Views

Author

Robert A. Russell, Oct 21 2018

Keywords

Comments

Two color patterns are equivalent if the colors are permuted. An unoriented cycle counts each chiral pair as one, i.e., they are equivalent.
Adnk[d,n,k] in Mathematica program is coefficient of x^k in A(d,n)(x) in Gilbert and Riordan reference.
T(n,k)=Pi_k(C_n) which is the number of non-equivalent partitions of the cycle on n vertices, with at most k parts. Two partitions P1 and P2 of a graph G are said to be equivalent if there is a nontrivial automorphism of G which maps P1 onto P2. - Bahman Ahmadi, Aug 21 2019
In other words, the number of n-bead bracelet structures using a maximum of k different colored beads. - Andrew Howroyd, Oct 30 2019

Examples

			Array begins with T(1,1):
1   1    1     1     1      1      1      1      1      1      1      1 ...
1   2    2     2     2      2      2      2      2      2      2      2 ...
1   2    3     3     3      3      3      3      3      3      3      3 ...
1   4    6     7     7      7      7      7      7      7      7      7 ...
1   4    9    11    12     12     12     12     12     12     12     12 ...
1   8   22    33    36     37     37     37     37     37     37     37 ...
1   9   40    73    89     92     93     93     93     93     93     93 ...
1  18  100   237   322    349    353    354    354    354    354    354 ...
1  23  225   703  1137   1308   1345   1349   1350   1350   1350   1350 ...
1  44  582  2433  4704   5953   6291   6345   6350   6351   6351   6351 ...
1  63 1464  8309 19839  28228  31284  31874  31944  31949  31950  31950 ...
1 122 3960 30108 88508 144587 171283 178190 179204 179300 179306 179307 ...
For T(7,2)=9, the patterns are AAAAAAB, AAAAABB, AAAABAB, AAAABBB, AAABAAB, AAABABB, AABAABB, AABABAB, and AAABABB; only the last is chiral, paired with AAABBAB.
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Partial row sums of A152176.
For increasing k, columns converge to A084708.
Cf. A320747 (oriented), A320742 (chiral), A305749 (achiral).

Programs

  • Mathematica
    Adnk[d_,n_,k_] := Adnk[d,n,k] = If[n>0 && k>0, Adnk[d,n-1,k]k + DivisorSum[d, Adnk[d,n-1,k-#]&], Boole[n == 0 && k == 0]]
    Ach[n_,k_] := Ach[n,k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)
    Table[Sum[(DivisorSum[n, EulerPhi[#] Adnk[#,n/#,j]&]/n + Ach[n,j])/2, {j,k-n+1}], {k,15}, {n,k}] // Flatten
  • PARI
    \\ Ach is A304972 and R is A152175 as square matrices.
    Ach(n)={my(M=matrix(n, n, i, k, i>=k)); for(i=3, n, for(k=2, n, M[i, k]=k*M[i-2, k] + M[i-2, k-1] + if(k>2, M[i-2, k-2]))); M}
    R(n)={Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, eulerphi(m) * subst(serlaplace(-1 + exp(sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d))), x, x^m))/x))]))}
    T(n)={my(M=(R(n) + Ach(n))/2); for(i=2, n, M[,i] += M[,i-1]); M}
    { my(A=T(12)); for(n=1, #A, print(A[n, ])) } \\ Andrew Howroyd, Nov 03 2019

Formula

T(n,k) = Sum_{j=1..k} Ach(n,j)/2 + (1/2n)*Sum_{d|n} phi(d)*A(d,n/d,j), where Ach(n,k) = [n>=0 & n<2 & n==k] + [n>1]*(k*Ach(n-2,k)+Ach(n-2,k-1)+Ach(n-2,k-2)) and A(d,n,k) = [n==0 & k==0] + [n>0 & k>0]*(k*A(d,n-1,k) + Sum_{j|d} A(d,n-1,k-j)).
T(n,k) = (A320747(n,k) + A305749(n,k)) / 2 = A320747(n,k) - A320742(n,k) = A320742(n,k) + A305749(n,k).

A032193 Number of necklaces with 8 black beads and n-8 white beads.

Original entry on oeis.org

1, 1, 5, 15, 43, 99, 217, 429, 810, 1430, 2438, 3978, 6310, 9690, 14550, 21318, 30667, 43263, 60115, 82225, 111041, 148005, 195143, 254475, 328756, 420732, 534076, 672452, 840652, 1043460, 1287036, 1577532, 1922741
Offset: 8

Views

Author

Keywords

Comments

The g.f. is Z(C_8,x)/x^8, the 8-variate cycle index polynomial for the cyclic group C_8, with substitution x[i]->1/(1-x^i), i=1,...,8. Therefore by Polya enumeration a(n+8) is the number of cyclically inequivalent 8-necklaces whose 8 beads are labeled with nonnegative integers such that the sum of labels is n, for n=0,1,2,... See A102190 for Z(C_8,x). See the comment in A032191 on the equivalence of this problem with the one given in the `Name' line. - Wolfdieter Lang, Feb 15 2005
From Petros Hadjicostas, Aug 31 2018: (Start)
The CIK[k] transform of sequence (c(n): n>=1) has generating function A_k(x) = (1/k)*Sum_{d|k} phi(d)*C(x^d)^{k/d}, where C(x) = Sum_{n>=1} c(n)*x^n is the g.f. of (c(n): n>=1).
When c(n) = 1 for all n >= 1, we get C(x) = x/(1-x) and A_k(x) = (x^k/k)*Sum_{d|k} phi(d)*(1-x^d)^{-k/d}, which is the g.f. of the number a_k(n) of necklaces of n beads of 2 colors with k of them black and n-k of them white.
Using Taylor expansions, we can easily prove that a_k(n) = (1/k)*Sum_{d|gcd(n,k)} phi(d)*binomial(n/d - 1, k/d - 1) = (1/n)*Sum_{d|gcd(n,k)} phi(d)*binomial(n/d, k/d), which is Robert A. Russell's formula in the Mathematica code below.
For this sequence k = 8, and thus we get the formulae below.
(End)

Crossrefs

Programs

  • Mathematica
    k = 8; Table[Apply[Plus, Map[EulerPhi[ # ]Binomial[n/#, k/# ] &, Divisors[GCD[n, k]]]]/n, {n, k, 30}] (* Robert A. Russell, Sep 27 2004 *)
    CoefficientList[Series[1/8*(1/(1 - x)^8 + 1/(1 - x^2)^4 + 2/(1 - x^4)^2 + 4/(1 - x^8)^1),{x, 0, 30}], x] (* Stefano Spezia, Sep 01 2018 *)

Formula

"CIK[ 8 ]" (necklace, indistinct, unlabeled, 8 parts) transform of 1, 1, 1, 1...
G.f.: (x^8)*(1-3*x+5*x^2+3*x^3-4*x^4+4*x^5+6*x^6-4*x^7+7*x^8-x^9+x^10+x^11)/((1-x)^4*(1-x^2)^2*(1-x^4)*(1-x^8)).
G.f.: 1/8*x^8*(1/(1-x)^8+1/(1-x^2)^4+2/(1-x^4)^2+4/(1-x^8)^1). - Herbert Kociemba, Oct 22 2016
a(n) = (1/8)*Sum_{d|gcd(n,8)} phi(d)*binomial(n/d - 1, 8/d - 1) = (1/n)*Sum_{d|gcd(n,8)} phi(d)*binomial(n/d, 8/d). - Petros Hadjicostas, Aug 31 2018

A032241 Number of identity bracelets of n beads of 4 colors.

Original entry on oeis.org

4, 6, 4, 15, 72, 266, 1044, 3780, 14056, 51132, 188604, 693845, 2572920, 9566046, 35758628, 134134080, 505159200, 1908539864, 7233104844, 27486455049, 104713295712, 399817073946, 1529746919604
Offset: 1

Views

Author

Keywords

Comments

For n>2 also number of asymmetric bracelets with n beads of four colors. - Herbert Kociemba, Nov 29 2016

Crossrefs

Column k=4 of A309528 for n >= 3.

Programs

  • Mathematica
    m = 4; (* asymmetric bracelets of n beads of m colors *) Table[Sum[MoebiusMu[d] (m^(n/d)/n - If[OddQ[n/d], m^((n/d + 1)/2), ((m + 1) m^(n/(2 d))/2)]), {d, Divisors[n]}]/2, {n, 3, 20}] (* Robert A. Russell, Mar 18 2013 *)
    mx=40;gf[x_,k_]:=Sum[MoebiusMu[n]*(-Log[1-k*x^n]/n-Sum[Binomial[k,i]x^(n i),{i,0,2}]/(1-k x^(2n)))/2,{n,mx}];ReplacePart[Rest[CoefficientList[Series[gf[x,4],{x,0,mx}],x]],{1->4,2->6}] (* Herbert Kociemba, Nov 29 2016 *)
  • PARI
    a(n)={if(n<3, binomial(4, n), sumdiv(n, d, moebius(n/d)*(4^d/n - if(d%2, 4^((d+1)/2), 5*4^(d/2)/2)))/2)} \\ Andrew Howroyd, Sep 12 2019

Formula

"DHK" (bracelet, identity, unlabeled) transform of 4, 0, 0, 0...
From Herbert Kociemba, Nov 29 2016: (Start)
More generally, gf(k) is the g.f. for the number of asymmetric bracelets with n beads of k colors.
gf(k): Sum_{n>=1} mu(n)*( -log(1-k*x^n)/n - Sum_{i=0..2} binomial(k,i)x^(n*i)/(1-k*x^(2*n)) )/2. (End)

A056358 Number of bracelet structures using exactly three different colored beads.

Original entry on oeis.org

0, 0, 1, 2, 5, 14, 31, 82, 202, 538, 1401, 3838, 10395, 28890, 80207, 225368, 634265, 1796648, 5100325, 14535298, 41513434, 118880650, 341094843, 980665898, 2824223495, 8146908210, 23535345372, 68084937912, 197211483155, 571915789978, 1660402195255, 4825554617686
Offset: 1

Views

Author

Keywords

Comments

Turning over will not create a new bracelet. Permuting the colors of the beads will not change the structure.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 3 of A152176.

Formula

a(n) = A056353(n) - A000011(n).

Extensions

Terms a(28) and beyond from Andrew Howroyd, Oct 24 2019

A133267 Number of Lyndon words on {1, 2, 3} with an even number of 1's.

Original entry on oeis.org

2, 1, 4, 8, 24, 56, 156, 400, 1092, 2928, 8052, 22080, 61320, 170664, 478288, 1344800, 3798240, 10760568, 30585828, 87166656, 249055976, 713197848, 2046590844, 5883926400, 16945772184, 48881973840, 141214767876, 408513980160, 1183282368360, 3431518388960
Offset: 1

Views

Author

Jennifer Woodcock (jennifer.woodcock(AT)ugdsb.on.ca), Jan 03 2008

Keywords

Comments

A Lyndon word is the aperiodic necklace representative which is lexicographically earliest among its cyclic shifts. Thus we can apply the fixed density formulas: L_k(n,d)=sum L(n-d, n_1,..., n_(k-1)); n_1+...+n_(k-1)=d where L(n_0, n_1,...,n_(k-1))=(1/n)sum mu(j)*[(n/j)!/((n_0/j)!(n_1/j)!...(n_(k-1)/j)!)]; j|gcd(n_0, n_1,...,n_(k-1)). For this sequence, sum over n_0=even. Alternatively, a(n)=(sum mu(d)*3^(n/d)/n; d|n) - (sum mu(d)*(3^(n/d)-1)/(2n); d|n, d odd).

Examples

			For n=3, out of 8 possible Lyndon words: 112, 113, 122, 123, 132, 133, 223, 233, only the first two and the last two have an even number of 1's. Thus a(3) = 4.
		

References

  • M. Lothaire, Combinatorics on Words, Addison-Wesley, Reading, MA, 1983.

Crossrefs

Programs

  • Maple
    with(numtheory): a:= n-> add(mobius(d) *3^(n/d), d=divisors(n))/n -add(mobius(d) *(3^(n/d)-1), d=select(x-> irem(x, 2)=1, divisors(n)))/ (2*n): seq(a(n), n=1..30);  # Alois P. Heinz, Jul 29 2011
  • Mathematica
    a[n_] := DivisorSum[n, MoebiusMu[#]*(3^(n/#) - (1/2)*Boole[OddQ[#]]*(3^(n/#)-1))&]/n; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Mar 21 2017, after Alois P. Heinz *)
  • PARI
    a133267(n) = sumdiv(n, d, moebius(d)*3^(n/d)/n - if (d%2, moebius(d)*(3^(n/d)-1)/(2*n))); \\ Michel Marcus, May 17 2018

Formula

a(1)=2; for n>1, if n=2^k for some k, then a(n) = ((3^(n/2)-1)^2)/(2*n). Otherwise, if n is even then a(n) = Sum_{d|n, d odd} mu(d)*(3^(n/d)-2*3^(n/(2*d)))/(2*n). If n is odd then a(n) = Sum_{d|n, d odd} mu(d)*(3^(n/d)-1)/(2*n).

A005515 Number of n-bead bracelets (turnover necklaces) of two colors with 10 red beads and n-10 black beads.

Original entry on oeis.org

1, 1, 6, 14, 47, 111, 280, 600, 1282, 2494, 4752, 8524, 14938, 25102, 41272, 65772, 102817, 156871, 235378, 346346, 502303, 716859, 1010256, 1404624, 1931540, 2625658, 3534776, 4711448, 6226148, 8156396, 10603704, 13679696, 17527595, 22304765, 28209566, 35459694
Offset: 10

Views

Author

Keywords

Comments

From Vladimir Shevelev, Apr 23 2011: (Start)
Also number of non-equivalent (turnover) necklaces of 10 beads each of them painted by one of n colors.
The sequence solves the so-called Reis problem about convex k-gons in case k=10 (see our comment to A032279). (End)

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • N. Zagaglia Salvi, Ordered partitions and colourings of cycles and necklaces, Bull. Inst. Combin. Appl., 27 (1999), 37-40.

Crossrefs

Column k=10 of A052307.

Programs

  • Mathematica
    k = 10; Table[(Apply[Plus, Map[EulerPhi[ # ]Binomial[n/#, k/# ] &, Divisors[GCD[n, k]]]]/n + Binomial[If[OddQ[n], n - 1, n - If[OddQ[k], 2, 0]]/2, If[OddQ[k], k - 1, k]/2])/2, {n, k, 50}] (* Robert A. Russell, Sep 27 2004 *)
    k=10;CoefficientList[Series[x^k*(1/k Plus@@(EulerPhi[#] (1-x^#)^(-(k/#))&/@Divisors[k])+(1+x)/(1-x^2)^Floor[(k+2)/2])/2,{x,0,50}],x] (* Herbert Kociemba, Nov 04 2016 *)

Formula

From Vladimir Shevelev, Apr 23 2011: (Start)
Put s(n,k,d) = 1, if n == k (mod d), and s(n,k,d) = 0, otherwise. Then a(n) = n*s(n,0,5)/25 + (384*C(n-1,9) + (n+1)*(n-2)*(n-4)*(n-6)*(n-8))/7680, if n is even; a(n) = (n-5)*s(n,0,5)/25 + (384*C(n-1,9) + (n-1)*(n-3)*(n-5)*(n-7)*(n-9))/7680, if n is odd. (End)
From Herbert Kociemba, Nov 04 2016: (Start)
G.f.: (1/20)*x^10*(1/(-1+x)^10 + 10/((-1+x)^6*(1+x)^5) + 1/(1-x^2)^5 + 4/(-1+x^5)^2 - 4/(-1+x^10)).
G.f.: k=10, x^k*((1/k)*Sum_{d|k} phi(d)*(1-x^d)^(-k/d) + (1+x)/(1-x^2)^floor((k+2)/2))/2. [edited by Petros Hadjicostas, Jan 10 2019] (End)

Extensions

Sequence extended and description corrected by Christian G. Bower
Name edited by Petros Hadjicostas, Jan 10 2019

A032169 Number of aperiodic necklaces of n beads of 2 colors, 11 of them black.

Original entry on oeis.org

1, 6, 26, 91, 273, 728, 1768, 3978, 8398, 16796, 32065, 58786, 104006, 178296, 297160, 482885, 766935, 1193010, 1820910, 2731365, 4032015, 5864749, 8414640, 11920740, 16689036, 23107896, 31666376, 42975796
Offset: 12

Views

Author

Keywords

Comments

From Petros Hadjicostas, Aug 26 2018: (Start)
Assume n >= k >= 2. If a_k(n) is the number of aperiodic necklaces of n beads of 2 colors such that k of them are black and n-k of them are white, then a_k(n) = (1/k)*Sum_{d|gcd(n,k)} mu(d)*binomial(n/d - 1, k/d - 1) = (1/n)*Sum_{d|gcd(n,k)} mu(d)*binomial(n/d, k/d). This follows from Herbert Kociemba's general formula for the g.f. of (a_k(n): n>=1) that can be found in the comments for sequence A032168.
For k prime, we get a_k(n) = floor(binomial(n-1, k-1)/k). In such a case, the sequence becomes a column for triangle A011847. (This is not true when k is composite >= 4.)
(End)

Crossrefs

A column of triangle A011847.

Programs

  • Mathematica
    CoefficientList[Series[x^11/11 (1/(1-x)^11-1/(1- x^11)),{x,0,50}],x] (* Herbert Kociemba, Oct 16 2016 *)

Formula

"CHK[ 11 ]" (necklace, identity, unlabeled, 11 parts) transform of 1, 1, 1, 1, ...
G.f.: (x^11/11)*(1/(1-x)^11-1/(1-x^11)). - Herbert Kociemba, Oct 16 2016
a(n) = (1/11)*(binomial(n-1, 10) - I(11|n)) = floor(binomial(n-1, 10)/11) for n >= 12, where I(a|b) = 1 if integer a divides integer b, and 0 otherwise. - Petros Hadjicostas, Aug 26 2018
Previous Showing 51-60 of 96 results. Next