cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 1495 results. Next

A130310 Minimal (or "greedy") Lucas representation of n, in which L(0) = 2 and L(2) = 3 are not allowed in the same representation (hence the correct representation of the integer 5 is 1010 rather than 101). A binary system of integers with Lucas numbers (A000032) as a base.

Original entry on oeis.org

0, 10, 1, 100, 1000, 1010, 1001, 10000, 10010, 10001, 10100, 100000, 100010, 100001, 100100, 101000, 101010, 101001, 1000000, 1000010, 1000001, 1000100, 1001000, 1001010, 1001001, 1010000, 1010010, 1010001, 1010100, 10000000, 10000010, 10000001, 10000100, 10001000
Offset: 0

Views

Author

Casey Mongoven, May 21 2007

Keywords

Examples

			a(9) = 10001 because 7 + 2 = 9.
a(10) is 10100 because 7 + 3 = 10.
		

References

  • Richard A. Dunlap, The Golden Ratio and Fibonacci Numbers, Singapore, World Scientific, 1997, pp. 73-77.
  • Edouard Zeckendorf, Représentation des nombres naturels par une somme des nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liège, Vol. 41 (1972), pp. 179-182.

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{s = {}, m = n, k = 1}, While[m > 0, If[m == 1, k = 1; AppendTo[s, k]; m = 0, If[m == 2, k = 0; AppendTo[s, k]; m = 0, While[LucasL[k] <= m, k++]; k--; AppendTo[s, k]; m -= LucasL[k]; k = 1]]]; FromDigits @ IntegerDigits[Total[2^s], 2]]; Array[a, 30, 0] (* Amiram Eldar, Feb 17 2022 *)

Extensions

Definition corrected by Casey Mongoven, May 29 2010
a(0) and more terms from Amiram Eldar, Feb 17 2022

A240926 a(n) = 2 + L(2*n) = 2 + A005248(n), n >= 0, with the Lucas numbers (A000032).

Original entry on oeis.org

4, 5, 9, 20, 49, 125, 324, 845, 2209, 5780, 15129, 39605, 103684, 271445, 710649, 1860500, 4870849, 12752045, 33385284, 87403805, 228826129, 599074580, 1568397609, 4106118245, 10749957124, 28143753125, 73681302249, 192900153620, 505019158609
Offset: 0

Views

Author

Kival Ngaokrajang, Aug 03 2014

Keywords

Comments

This sequence also gives the curvature of touching circles inscribed in a special way in the smaller segment of a circle of radius 5/4 cut by a chord of length 2.
Consider a circle C of radius 5/4 (in some length units) with a chord of length 2. This has been chosen so that the larger sagitta also has length 2. The smaller sagitta has length 1/2. The input, besides the circle C, is the circle C_0 with radius R_0 = 1/4, touching the chord and circle C. The following sequence of circles C_n with radii R_n, n >= 1, is obtained from the conditions that C_n touches (i) the circle C, (ii) the chord and (iii) the circle C_(n-1). The curvature of the n-th circle, C_n = 1/R_n, n >= 0, is conjectured to be a(n). See an illustration given in the link. As found by Wolfdieter Lang (see part II of the proof given by W. Lang in the link), this circle problem is related to the nonnegative solutions of the Pell equation X^2 - 5*Y^2 = 4: a(n) = 2 + X(n) = 2 + A005248(n). For the larger segment below the chord (with sagitta length 2) the sequence would be A115032, see W. Lang's proof given in part I of the link.
If the circle radius and the sagitta length were both equal to 1, the curvature sequence would be A099938.
Essentially a duplicate of A092387. - R. J. Mathar, Jul 07 2023

Crossrefs

Programs

  • Magma
    [2+Lucas(2*n): n in [0..40]]; // Vincenzo Librandi, Oct 08 2015
    
  • Mathematica
    Table[2 + LucasL[2 n], {n, 0, 50}] (* Vincenzo Librandi, Oct 08 2015 *)
  • PARI
    vector(100, n, n--; 2 + fibonacci(2*n-1) + fibonacci(2*n+1)) \\ Altug Alkan, Oct 08 2015

Formula

Conjectures (proved in the next entry) from Colin Barker, Aug 25 2014 (and Aug 27 2014): (Start)
a(n) = (2 + ((1/2)*(3-sqrt(5)))^n + ((1/2)*(3+sqrt(5)))^n).
a(n) = 4*a(n-1) - 4*a(n-2) + a(n-3).
G.f.: -(5*x^2-11*x+4) / ((x-1)*(x^2-3*x+1)). (End)
From Wolfdieter Lang, Aug 26 2014: (Start)
a(n) = 2 + S(n, 3) - S(n-2, 3) = 2 + 2*S(n, 3) - 3*S(n-1, 3).
a(n) = 3*a(n-1) - a(n-2) - 2, n >= 1, with a(-1)= 5 and a(0) = 4 (from the S(n, 3) recurrence or from A005248).
The first of the Colin Barker conjectures above is true because of the Binet-de Moivre formula for L(2*n) (see the Jul 24 2003 Dennis P. Walsh comment on A005248). With phi = (1+sqrt(5))/2, use 1/phi = phi-1, phi^2 = phi+1, (phi-1)^2 = 2 - phi.
His third conjecture (the g.f.) follows from the g.f. of A005248 by adding 2/(1-x).
His second conjecture (recurrence) with input a(-3) = 20, a(-2) = 9 and a(-1) = 5 (from the above given recurrence) leads to his g.f. with the expanded denominator. Thus all three conjectures are true. (End)
a(n) = A005592(n) + 3, with n > 0. - Zino Magri, Feb 16 2015
a(n) = (phi^n + phi^(-n))^2, where phi = A001622 = (1 + sqrt(5))/2. - Diego Rattaggi, Jun 10 2020
Sum_{k>=0} 1/a(k) = A338303. - Amiram Eldar, Oct 22 2020

Extensions

Edited: name changed (after proof has been given in part II of the W. Lang link), comments rewritten, cross refs. and link to Chebyshev index added. - Wolfdieter Lang, Aug 26 2014

A130245 Number of Lucas numbers (A000032) <= n.

Original entry on oeis.org

0, 1, 2, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10
Offset: 0

Views

Author

Hieronymus Fischer, May 19 2007, Jul 02 2007

Keywords

Comments

Partial sums of the Lucas indicator sequence A102460.
For n>=2, we have a(A000032(n)) = n + 1.

Examples

			a(9)=5 because there are 5 Lucas numbers <=9 (2,1,3,4 and 7).
		

Crossrefs

Partial sums of A102460.
For partial sums of this sequence, see A130246. Other related sequences: A000032, A130241, A130242, A130247, A130249, A130253, A130255, A130259.
For Fibonacci inverse, see A130233 - A130240, A104162, A108852.

Programs

  • Magma
    [0] cat [1+Floor(Log((2*n+1)/2)/Log((1+Sqrt(5))/2)): n in [1..100]]; // G. C. Greubel, Sep 09 2018
    
  • Mathematica
    Join[{0}, Table[1+Floor[Log[GoldenRatio, (2*n+1)/2]], {n,1,100}]] (* G. C. Greubel, Sep 09 2018 *)
  • PARI
    A102460(n) = { my(u1=1,u2=3,old_u1); if(n<=2,sign(n),while(n>u2,old_u1=u1;u1=u2;u2=old_u1+u2);(u2==n)); };
    A130245(n) = if(!n,n,A102460(n)+A130245(n-1));
    \\ Or just as:
    c=0; for(n=0,123,c += A102460(n); print1(c,", ")); \\ Antti Karttunen, May 13 2018
    
  • Python
    from itertools import count, islice
    def A130245_gen(): # generator of terms
        yield from (0, 1, 2)
        a, b = 3,4
        for i in count(3):
            yield from (i,)*(b-a)
            a, b = b, a+b
    A130245_list = list(islice(A130245_gen(),40)) # Chai Wah Wu, Jun 08 2022

Formula

a(n) = 1 +floor(log_phi((n+sqrt(n^2+4))/2)) = 1 +floor(arcsinh(n/2)/log(phi)) for n>=2, where phi = (1+sqrt(5))/2.
a(n) = A130241(n)+1 = A130242(n+1) for n>=2.
G.f.: g(x) = 1/(1-x)*sum{k>=0, x^Lucas(k)}.
a(n) = 1 +floor(log_phi(n+1/2)) for n>=1, where phi is the golden ratio.
Sum_{n>=1} (-1)^(n+1)/a(n) = 3/2 - Pi/(6*sqrt(3)) - log(3)/2. - Amiram Eldar, Jul 25 2025

A070825 One half of product of first n+1 Lucas numbers A000032.

Original entry on oeis.org

1, 1, 3, 12, 84, 924, 16632, 482328, 22669416, 1722875616, 211913700768, 42170826452832, 13579006117811904, 7074662187380001984, 5963940223961341672512, 8134814465483270041306368, 17953535525321576981163154176, 64112075360923351399733623562496, 370439571435415124387660876944101888
Offset: 0

Views

Author

Wolfdieter Lang, May 10 2002

Keywords

Crossrefs

Cf. A000032, A003266 (for Fibonacci), A003046 (for Catalan), A101690, A135407, A218490.

Programs

  • Magma
    [1] cat [&*[Lucas(i+1): i in [0..n]]: n in [0..20]]; // Vincenzo Librandi, Sep 15 2016
  • Maple
    c := arccsch(2) - I*Pi/2:
    A070825 := n -> local j; 2^n*mul(I^j*cosh(c*j), j = 1..n):
    seq(simplify(A070825(n)), n = 0..18);  # Peter Luschny, Jul 07 2025
  • Mathematica
    FoldList[Times, LucasL[Range[0, 20]]]/2 (* or *)
    Table[Round[GoldenRatio^(n(n+1)/2) QPochhammer[-1, GoldenRatio-2, n+1]]/2, {n, 0, 20}] (* Vladimir Reshetnikov, Sep 15 2016 *)
  • PARI
    a(n) = prod(k=0, n, fibonacci(k+1)+fibonacci(k-1))/2; \\ Michel Marcus, Mar 18 2016
    

Formula

a(n) = (Product_{k=0..n} L(k))/2 with L = A000032.
Sum_{n>=0} 1/a(n) = 1 + A101690. - Amiram Eldar, Nov 09 2020
a(n) = 2^n*Product_{j=1..n} i^j*cosh(c*j), where c = arccsch(2) - i*Pi/2. - Peter Luschny, Jul 07 2025

A203800 a(n) = (1/n) * Sum_{d|n} moebius(n/d) * Lucas(d)^(d-1), where Lucas(n) = A000032(n).

Original entry on oeis.org

1, 1, 5, 85, 2928, 314925, 84974760, 63327890015, 123670531939440, 644385861467631972, 8853970669063185618000, 321538767413685546538468385, 30768712746239178236068160093280, 7755868453482819803691622493685140880, 5144106193113274410507722020733942141881664
Offset: 1

Views

Author

Paul D. Hanna, Jan 06 2012

Keywords

Examples

			G.f.: F(x) = 1/((1-x-x^2) * (1-3*x^2+x^4) * (1-4*x^3-x^6)^5 * (1-7*x^4+x^8)^85 * (1-11*x^5-x^10)^2928 * (1-18*x^6+x^12)^314925 * (1-29*x^7-x^14)^84974760 * (1-47*x^8+x^16)^63327890015 * (1-76*x^9-x^18)^123670531939440 *...).
where F(x) = exp( Sum_{n>=1} Lucas(n)^n * x^n/n ) = g.f. of A156216:
F(x) = 1 + x + 5*x^2 + 26*x^3 + 634*x^4 + 32928*x^5 + 5704263*x^6 +...
so that the logarithm of F(x) begins:
log(F(x)) = x + 3^2*x^2/2 + 4^3*x^3/3 + 7^4*x^4/4 + 11^5*x^5/5 + 18^6*x^6/6 + 29^7*x^7/7 + 47^8*x^8/8 + 76^9*x^9/9 + 123^10*x^10/10 +...+ Lucas(n)^n*x^n +...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := 1/n DivisorSum[n, MoebiusMu[n/#] LucasL[#]^(#-1)&]; Array[a, 15] (* Jean-François Alcover, Dec 23 2015 *)
  • PARI
    {a(n)=if(n<1, 0, sumdiv(n, d, moebius(n/d)*(fibonacci(d-1)+fibonacci(d+1))^(d-1))/n)}
    
  • PARI
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=local(F=exp(sum(m=1, n, Lucas(m)^m*x^m/m)+x*O(x^n)));if(n==1,1,polcoeff(F*prod(k=1,n-1,(1 - Lucas(k)*x^k + (-1)^k*x^(2*k) +x*O(x^n))^a(k)),n)/Lucas(n))}

Formula

G.f.: 1/Product_{n>=1} (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^a(n) = exp(Sum_{n>=1} Lucas(n)^n * x^n/n), which is the g.f. of A156216.
G.f.: Product_{n>=1} G_n(x^n)^a(n) = exp(Sum_{n>=1} Lucas(n)^n * x^n/n) where G_n(x^n) = Product_{k=0..n-1} G(u^k*x) where G(x) = 1/(1-x-x^2) and u is an n-th root of unity.

A130311 Maximal (or "lazy") Lucas representation of n. Binary system for representing integers using Lucas numbers (A000032) as a base.

Original entry on oeis.org

0, 10, 1, 11, 110, 101, 111, 1011, 1110, 1101, 1111, 10110, 10101, 10111, 11011, 11110, 11101, 11111, 101011, 101110, 101101, 101111, 110110, 110101, 110111, 111011, 111110, 111101, 111111, 1010110, 1010101, 1010111, 1011011, 1011110, 1011101, 1011111, 1101011, 1101110
Offset: 0

Views

Author

Casey Mongoven, May 21 2007; corrected Mar 23 2008

Keywords

Examples

			a(7) = 1110 because 4 + 3 + 1 = 8.
a(8) = 1101 because 4 + 3 + 2 = 9.
		

References

  • Edouard Zeckendorf, Représentation des nombres naturels par une somme des nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liège, Vol. 41 (1972), pp. 179-182.

Crossrefs

Programs

  • Mathematica
    lazy = Select[IntegerDigits[Range[10^2], 2], SequenceCount[#, {0, 0}] == 0 &]; t = Total[# * Reverse@LucasL[Range[0, Length[#] - 1]]] & /@ lazy; Join[{0}, FromDigits /@ lazy[[TakeWhile[Flatten[FirstPosition[t, #] & /@ Range[Max[t]]], NumberQ]]]] (* Amiram Eldar, Feb 17 2022 *)

Extensions

a(0) and more terms from Amiram Eldar, Feb 17 2022

A153415 Decimal expansion of Sum_{n>=1} 1/A000032(2*n).

Original entry on oeis.org

5, 6, 6, 1, 7, 7, 6, 7, 5, 8, 1, 1, 3, 8, 4, 5, 5, 0, 2, 7, 5, 9, 2, 9, 3, 2, 1, 2, 1, 2, 0, 6, 2, 0, 0, 3, 7, 3, 6, 1, 4, 4, 1, 9, 7, 8, 6, 5, 9, 0, 5, 5, 7, 0, 4, 9, 2, 3, 4, 4, 4, 1, 3, 2, 5, 4, 5, 7, 5, 5, 5, 4, 5, 3, 0, 2, 0, 8, 6, 8, 5, 6, 1, 4, 8, 5, 5, 6, 7, 8, 4, 2, 1, 8, 1, 8, 3, 2, 6, 6, 4, 6, 1, 5, 3
Offset: 0

Views

Author

Eric W. Weisstein, Dec 25 2008

Keywords

Comments

From Peter Bala, Oct 15 2019: (Start)
c = (1/4)*(theta_3( (3-sqrt(5))/2 )^2 - 1 ), where theta_3(q) = 1 + 2*Sum_{n >= 1} q^n^2. See Borwein and Borwein, Proposition 3.5 (i), p. 91. Cf. A056854.
Series acceleration formulas (L(n) = A000032(n)):
c = 1 - 5*Sum_{n >= 1} 1/( L(2*n)*(L(2*n)^2 - 5) ).
c = (1/6) + 15*Sum_{n >= 1} 1/( L(2*n)*(L(2*n)^2 + 5) ).
c = (11/16) - 10*Sum_{n >= 1} (L(2*n)^2 - 10)/( L(2*n)*(L(2*n)^2 - 5)*(L(2*n)^2 - 20) ). (End)
Compare with Sum_{n >= 1} 1/(L(2*n) - sqrt(5)) = phi and Sum_{n >= 1} 1/(L(2*n) + sqrt(5)) = 2 - phi, where phi = (sqrt(5) + 1)/2. - Peter Bala, Nov 23 2019
This constant is transcendental (Duverney et al., 1997). - Amiram Eldar, Oct 30 2020

Examples

			0.56617767581138455027...
		

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 91.

Crossrefs

Programs

A122869 Primes p that divide Lucas((p-1)/2), where Lucas is A000032.

Original entry on oeis.org

11, 19, 31, 59, 71, 79, 131, 139, 151, 179, 191, 199, 211, 239, 251, 271, 311, 331, 359, 379, 419, 431, 439, 479, 491, 499, 571, 599, 619, 631, 659, 691, 719, 739, 751, 811, 839, 859, 911, 919, 971, 991, 1019, 1031, 1039, 1051, 1091, 1151, 1171, 1231, 1259
Offset: 1

Views

Author

Alexander Adamchuk, Sep 16 2006

Keywords

Comments

Final digit of a(n) is 1 or 9.
A002145 is the union of this sequence and A122870, Primes p that divide Lucas((p+1)/2).
Conjecture: This sequence is just the primes congruent to 11 or 19 mod 20. - Charles R Greathouse IV, May 25 2011 [The conjecture is correct. - Jianing Song, Jun 20 2025]
Note that F(p-1) = F((p-1)/2)*Lucas((p-1)/2), where F = A000045. Since gcd(F(n),Lucas(n)) = 1 or 2 (because Lucas(n)^2 - 5*F(n)^2 = 4*(-1)^n), this sequence lists primes p such that p divides F(p-1) but does not divides F((p-1)/2). By Propositions 1.1 and 1.2 (the k = 3 case) of my link below, this is primes p == 11, 19 (mod 20). - Jianing Song, Jun 20 2025

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[1000]],IntegerQ[(Fibonacci[(#1-1)/2-1]+Fibonacci[(#1-1)/2+1])/#1]&]
  • PARI
    lista(kmax) = {my(lucas1 = 1, lucas2 = 3, lucas3, p); for(k = 3, kmax, lucas3 = lucas1 + lucas2; p = 2*k + 1; if(isprime(p) && !(lucas3 % p), print1(p, ", ")); lucas1 = lucas2; lucas2 = lucas3);} \\ Amiram Eldar, Jun 06 2024

A060922 Convolution triangle for Lucas numbers A000032(n+1), n >= 0.

Original entry on oeis.org

1, 3, 1, 4, 6, 1, 7, 17, 9, 1, 11, 38, 39, 12, 1, 18, 80, 120, 70, 15, 1, 29, 158, 315, 280, 110, 18, 1, 47, 303, 753, 905, 545, 159, 21, 1, 76, 566, 1687, 2568, 2120, 942, 217, 24, 1, 123, 1039, 3612, 6666, 7043, 4311
Offset: 0

Views

Author

Wolfdieter Lang, Apr 20 2001

Keywords

Comments

In the language of Shapiro et al. (see A053121 for the reference) such a lower triangular (ordinary) convolution array, considered as a matrix, belongs to the Bell-subgroup of the Riordan-group. G.f. for row polynomials p(n,x) := sum(a(n,m)*x^m,m=0..n) is (1+2*z)/(1-(1+x)*z-(1+2*x)*z^2).
Row sums give A060925. Column sequences (without leading zeros) are, for m=0..6: A000032(n+1)= A000204(n+1) (Lucas), A004799(n+1), A060929-33.
Bisection of this triangle gives triangles A060923 (even part) and A060924 (odd part).
For the m-th column sequence (without leading zeros) one has: a(n+m,m)= (pL1(m,n)*L(n+2)+pL2(m,n)*L(n+1))/(m!*5^m), m >= 0, with the Lucas numbers L(n)=A000032(n), n >= 0 and the row polynomials pL1(n,x) := sum(A061188(n,m)*x^n,m=0..n) and pL2(n,x) := sum(A061189(n,m)*x^m,m=0..n).
Riordan array ((1+2*x)/(1-x-x^2), x*(1+2*x)/(1-x-x^2)). - Philippe Deléham, Jan 21 2014
T is the convolution triangle of A000204 (see A357368). - Peter Luschny, Oct 19 2022

Examples

			p(2,x) = 4+6*x+x^2.
Triangle begins:
1 ;
3, 1;
4, 6, 1;
7, 17, 9, 1;
11, 38, 39, 12, 1;
18, 80, 120, 70, 15, 1;
29, 158, 315, 280, 110, 18, 1;
47, 303, 753, 905, 545, 159, 21, 1;
		

Crossrefs

Cf. A000032.

Programs

Formula

a(n, m)=((n-m+1)*a(n, m-1)+2*(2*n-m)*a(n-1, m-1)+4*(n-1)*a(n-2, m-1))/(5*m), n >= m >= 1, a(n, 0)= A000204(n+1)= A000032(n+1).
G.f. for m-th column: ((1+2*x)/(1-x-x^2))* ((x*(1+2*x))/(1-x-x^2))^m.
T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k) + T(n-2,k-1), T(0,0) = 1, T(1,0) = 3, T(1,1) = 1, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Jan 21 2014

Extensions

Example improved by Philippe Deléham, Jan 21 2014

A127211 a(n) = 4^n*Lucas(n), where Lucas = A000032.

Original entry on oeis.org

2, 4, 48, 256, 1792, 11264, 73728, 475136, 3080192, 19922944, 128974848, 834666496, 5402263552, 34963718144, 226291089408, 1464583847936, 9478992822272, 61349312856064, 397061136580608, 2569833552019456, 16632312393367552, 107646586405781504, 696703343917006848
Offset: 0

Views

Author

Artur Jasinski, Jan 09 2007

Keywords

Crossrefs

Programs

  • Magma
    [4^n*Lucas(n): n in [0..30]]; // G. C. Greubel, Dec 18 2017
  • Maple
    a:= n-> 4^n*(<<1|1>, <1|0>>^n. <<2, -1>>)[1, 1]:
    seq(a(n), n=0..22);  # Alois P. Heinz, Apr 15 2024
  • Mathematica
    Table[4^n Tr[MatrixPower[{{1, 1}, {1, 0}}, n]], {n, 0, 20}]
    Table[4^n*LucasL[n], {n, 0, 50}] (* G. C. Greubel, Dec 18 2017 *)
  • PARI
    my(x='x + O('x^30)); Vec(-4*x*(8*x+1)/(16*x^2+4*x-1)) \\ G. C. Greubel, Dec 18 2017
    

Formula

a(n) = Trace of matrix [({4,4},{4,0})^n].
a(n) = 4^n * Trace of matrix [({1,1},{1,0})^n].
From Colin Barker, Sep 02 2013: (Start)
a(n) = 4*a(n-1) + 16*a(n-2).
G.f.: 2*x*(2*x-1)/(16*x^2+4*x-1). (End)
From Peter Luschny, Apr 15 2024: (Start)
a(n) = 2^n*((1 - sqrt(5))^n + (1 + sqrt(5))^n).
a(n) = 4^n*(Fibonacci(n+1) + Fibonacci(n-1)). (End)
a(n) = 2^n*A087131(n). - Michel Marcus, Apr 15 2024

Extensions

a(0)=2 prepended by Alois P. Heinz, Apr 15 2024
Previous Showing 11-20 of 1495 results. Next